Analysis of Schmidt modes of ultra-broadband biphotons generated in a photonic crystal fiber

封面

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We presented numerical estimates of the degree of quantum entanglement based on Schmidt mode analysis for ultra-broadband biphotonic states generated in a photonic crystal fiber. We show that these states have a high degree of quantum entanglement even when the source is pumped broadband by femtosecond laser pulses.

全文:

受限制的访问

作者简介

M. Smirnov

Kazan National Research Technical University

编辑信件的主要联系方式.
Email: maxim@kazanqc.org

Kazan Quantum Center

俄罗斯联邦, Kazan

A. Smirnova

Kazan National Research Technical University

Email: maxim@kazanqc.org

Kazan Quantum Center

俄罗斯联邦, Kazan

A. Khairullin

Kazan National Research Technical University

Email: maxim@kazanqc.org

Kazan Quantum Center

俄罗斯联邦, Kazan

O. Ermishev

Kazan National Research Technical University

Email: maxim@kazanqc.org

Kazan Quantum Center

俄罗斯联邦, Kazan

S. Moiseev

Kazan National Research Technical University

Email: maxim@kazanqc.org

Kazan Quantum Center

俄罗斯联邦, Kazan

参考

  1. Клышко Д.Н. // УФН. 1989. Т. 158. № 6. С. 327, Klyshko D.N. // Sov. Phys. Usp. 1989. V. 32. P. 555.
  2. Moreau P.-A., Tonelli E., Gregori T., Padgett M.J. // Nature Rev. Phys. 2019. V. 1. No. 6. P. 367.
  3. Vallés A., Jimenez G., Salazar-Serrano L.J., Torres J.P. // Phys. Rev. A. 2018. V. 97. No. 2. Art. No. 023824.
  4. Schlawin F., Dorfman K.E., Mukamel S. // Acc. Chem. Res. 2018. V. 51. No. 9. P. 2207.
  5. Бантыш Б.И., Катамадзе К.Г., Богданов Ю.И. и др. // Письма в ЖЭТФ. 2022. Т. 116. № 1—2 (7). С. 33, Bantysh B.I., Katamadze K.G., Bogdanov Yu.I. et al. // JETP Lett. 2022. V. 116. No. 1. P. 29.
  6. Миннегалиев М.М., Герасимов К.И., Моисеев С.А. // Письма в ЖЭТФ. 2023. Т. 117. № 11. С. 867, Minnegaliev M.M., Gerasimov K.I., Moiseev S.A. // JETP Lett. 2023. V. 117. No. 11. P. 865.
  7. Melnik K.S., Moiseev E.S. // Phys. Rev. A. 2023. V. 107. No. 5. Art. No. 052607.
  8. Федоров А.К., Киктенко Е.О., Хабарова К.Ю., Колачевский Н.Н. // УФН. 2023. Т. 193. № . 11. С. 1162, Fedorov A.K., Kiktenko E.O., Khabarova K.Yu., Kolachevsky N.N. // Phys. Usp. 2023. V. 66. No. 11. P. 1095.
  9. Cozzolino D., da Lio B., Bacco D., Oxenlowe L.K. // Adv. Quantum Technol. 2019. V. 2. No. 12. Art. No. 1900038.
  10. Erhard M., Krenn M., Zeilinger A. // Natute Rev. Phys. 2020. V. 2. No. 7. P. 365.
  11. Bechmann-Pasquinucci H., Peres A. // Phys. Rev. Lett. 2000. V. 85. No. 15. P. 3313.
  12. Couteau C., Barz S., Durt T. et al. // Nature. Rev. Phys. 2023. V. 5. No. 6. P. 326.
  13. Катамадзе К.Г., Пащенко А.В., Романова А.В., Кулик С.П. // Письма в ЖЭТФ. 2022. Т. 115. № 10. С. 613, Katamadze K.G., Pashchenko A.V., Romanova A.V., Kulik S.P. // JETP Lett. 2022. V. 115. No. 10. P. 581.
  14. Petrovnin K.V., Smirnov M.A., Fedotov I.V. et al. // Laser Phys. Lett. 2019. V. 16. No. 7. Art. No. 075401.
  15. Хайруллин А.Ф., Смирнова А.М., Арсланов Н.М. и др. // Письма в ЖЭТФ. 2024. Т. 119. № 5. С. 336, Khairullin A.F., Smirnova A.M., Arslanov N.M. et al. // JETP Lett. 2024. V. 119. No. 5. P. 345.
  16. Hammer J., Chekhova M.V., Häupl D.R. et al. // Phys. Rev. Res. 2020. V. 2. No. 1. P. 012079.
  17. Smirnov M.A., Petrovnin K.V., Fedotov I.V. et al. // Laser Phys. Lett. 2019. V. 16. No. 11. Art. No. 115402.
  18. Garay-Palmett K., Kim D.V., Zhang Y. et al. // JOSA B. 2023. V. 40. No. 3. P. 469.
  19. Ермишев О.А., Смирнов М.А., Хайруллин А.Ф., Арсланов Н.М.// Изв. РАН. Сер. физ. 2022. Т. 86. № 12. С. 1764, Ermishev O.A., Smirnov M.A., Khairullin A.F., Arslanov N.M. // Bull. Russ. Acad. Sci. Phys. 2022. V. 86. No. 12. P. 1502.
  20. Lopez-Huidobro S., Lippl M., Joly N.Y., Chekhova M.V. // Opt. Letters. 2021. V. 46. No. 16. P. 4033.
  21. Smirnov M.A., Fedotov I.V., Smirnova A.M. et al. // Opt. Letters. 2024. V. 49. No. 14. P. 3838.
  22. Агравал Г. Нелинейная волоконная оптика. М.: Мир, 1996.
  23. Law C.K., Walmsley I.A., Eberly J.H. // Phys. Rev. Lett. 2000. V. 84. No. 23. P. 5304.
  24. Migdall A., Polyakov S.V., Fan J., Bienfang J.C. Single-photon generation and detection: physics and applications. Experimental Methods in the Physical Sciences. V. 45. Acad. Press, 2013. 616 p.
  25. Желтиков А.М., Скалли М.О. // УФН. 2020. Т. 190. № 7. С. 749, Zheltikov A.M., Scully M.O. // Phys. Usp. 2020. V. 63. No. 7. P. 698.
  26. Petrov N.L., Voronin A.A., Fedotov A.B., Zheltikov A.M. // Phys. Rev. A. 2019. V. 100. No. 3. Art. No. 033837.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Schematic diagram of biphoton generation in an optical fiber with nonlinear susceptibility χ(3) (a). Schematic representation of the function of the joint spectral intensity of the generated photons, K is the Schmidt parameter (b). Energy diagram of the spontaneous four-wave mixing process, in which two pump photons are transformed into two daughter photons at other frequencies (c).

下载 (202KB)
3. Fig. 2. Joint spectral intensity |F(ωs, ωi)|2 and the corresponding distributions of the Schmidt mode coefficients for different values ​​of pump wavelengths near the phase matching extremum point: λp = 751 (a, b), 752 nm (c, d).

下载 (383KB)

版权所有 © Russian Academy of Sciences, 2024