On the study of the space metrics signature from correlations of particles in hadron interactions

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Long-range near-side “ridge” effect discovered by the CMS Collaboration at the LHC, and the coplanarity of subcores in gamma-ray-hadron families, can be reproduced in the framework of the coplanar generation of the most energetic hadrons in hadron interactions, explained, in particular, by the hypothesis of change of the signature of the metric of the space-time continuum, namely, the transformation of the basic three-dimensional state into two-dimensional one (3D ↔ 2D). A method is proposed for experimental verification of this hypothesis by studying the azimuthal correlations of particles in hadron interactions.

Sobre autores

R. Mukhamedshin

Institute for Nuclear Research of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: rauf_m@mail.ru
Russia, 117312, Moscow

Bibliografia

  1. Borisov A.S. et al. (Pamir Collaboration) // Proc. 4th ISVHECRI. (Beijing, 1986). P. 4.
  2. Иваненко И.П., Копенкин В.В., Манагадзе А.К. и др. // Письма в ЖЭТФ. 1992. Т. 50. № 11. С. 192.
  3. Kopenkin V.V., Managadze A.K., Rakobolskaya I.V. et al. // Phys. Rev. D. 1995. V. 52. P. 2766.
  4. Pamir Collaboration // Preprint INP MSU. 89-67/144. 1989.
  5. Borisov A.S., Mukhamedshin R.A., Puchkov V.S. et al. // Nucl. Phys. B. Proc. Suppl. 2001. V. 97. P. 118.
  6. Xue L., Dai Z.Q., Li J.Y. et al. // Proc. 26th ICRC. V. 1. (Salt Lake City, 1999) P. 127.
  7. Apanasenko A.V., Dobrotin N.A., Goncharova L.A. et al. // Proc. 15th ICRC. V. 7. (Plovdiv, 1977) P. 220.
  8. Osedlo V.I., Rakobolskaya I.V., Galkin V.I. et al. // Proc. 27th ICRC. V. 1. (Hamburg, 2001) P. 1426.
  9. Capdevielle J.N. // J. Phys. G. 1988. V. 14. P. 503.
  10. Mukhamedshin R.A. // JHEP. 2005. V. 0505. P. 049.
  11. Mukhamedshin R.A. // Nucl. Phys. B. Proc. Suppl. 2009. V. 196C. P. 98.
  12. Манагадзе А.К., Мухамедшин Р.А. // Изв. РАН. Сер. физ. 2013. Т. 77. № 11. С. 1573; Managadze A.K, Mukhamedshin R.A. // Bull. Russ. Acad. Sci. Phys. 2013. V. 77. No. 11. P. 1315.
  13. Royzen I.I. // Mod. Phys. Lett. A. 1994. V. 9. No. 38. P. 3517.
  14. Capdevielle J.N. // Nucl. Phys. B. Proc. Suppl. 2008. V. 175. P. 137.
  15. Yuldashbaev T.S., Nuritdinov Kh., Chudakov V.M. // Nuovo Cimento. 2001. V. 24C. P. 569.
  16. Mukhamedshin R.A. // Nucl. Phys. B. Proc. Suppl. 1999. V. 75A. P. 141.
  17. Wibig T. // arXiv: hep-ph/0003230. 2000.
  18. Anchordoqui L., Dai D.C., Fairbairn M. et al. // Mod. Phys. Lett. A. 2012. V. 27. Art. No. 1250021.
  19. Stojkovic D. // arXiv:1406.2696v1 [gr-qc]. 2014.
  20. The CMS Collaboration // arXiv:1009.4122v1 [hep-ex]. 2010.
  21. Mukhamedshin R.A. // Eur. Phys. J. Plus. 2019. V. 134. P. 584.
  22. Mukhamedshin R.A., Sadykov T. // J. Phys. Conf. Ser. 2019. V. 1181. Art. No. 012089.
  23. Mukhamedshin R.A. // Eur. Phys. J. C. 2022. V. 82. P. 155.
  24. Мухамедшин Р.А. // Изв. РАН. Сер. физ. 2021. Т. 85. № 4. С. 534; Mukhamedshin R.A. // Bull. Russ. Acad. Sci. Phys. 2021. V. 85. No. 4. P. 402.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (583KB)
3.

Baixar (1MB)

Declaração de direitos autorais © Р.А. Мухамедшин, 2023