On the study of the space metrics signature from correlations of particles in hadron interactions

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Long-range near-side “ridge” effect discovered by the CMS Collaboration at the LHC, and the coplanarity of subcores in gamma-ray-hadron families, can be reproduced in the framework of the coplanar generation of the most energetic hadrons in hadron interactions, explained, in particular, by the hypothesis of change of the signature of the metric of the space-time continuum, namely, the transformation of the basic three-dimensional state into two-dimensional one (3D ↔ 2D). A method is proposed for experimental verification of this hypothesis by studying the azimuthal correlations of particles in hadron interactions.

作者简介

R. Mukhamedshin

Institute for Nuclear Research of the Russian Academy of Sciences

编辑信件的主要联系方式.
Email: rauf_m@mail.ru
Russia, 117312, Moscow

参考

  1. Borisov A.S. et al. (Pamir Collaboration) // Proc. 4th ISVHECRI. (Beijing, 1986). P. 4.
  2. Иваненко И.П., Копенкин В.В., Манагадзе А.К. и др. // Письма в ЖЭТФ. 1992. Т. 50. № 11. С. 192.
  3. Kopenkin V.V., Managadze A.K., Rakobolskaya I.V. et al. // Phys. Rev. D. 1995. V. 52. P. 2766.
  4. Pamir Collaboration // Preprint INP MSU. 89-67/144. 1989.
  5. Borisov A.S., Mukhamedshin R.A., Puchkov V.S. et al. // Nucl. Phys. B. Proc. Suppl. 2001. V. 97. P. 118.
  6. Xue L., Dai Z.Q., Li J.Y. et al. // Proc. 26th ICRC. V. 1. (Salt Lake City, 1999) P. 127.
  7. Apanasenko A.V., Dobrotin N.A., Goncharova L.A. et al. // Proc. 15th ICRC. V. 7. (Plovdiv, 1977) P. 220.
  8. Osedlo V.I., Rakobolskaya I.V., Galkin V.I. et al. // Proc. 27th ICRC. V. 1. (Hamburg, 2001) P. 1426.
  9. Capdevielle J.N. // J. Phys. G. 1988. V. 14. P. 503.
  10. Mukhamedshin R.A. // JHEP. 2005. V. 0505. P. 049.
  11. Mukhamedshin R.A. // Nucl. Phys. B. Proc. Suppl. 2009. V. 196C. P. 98.
  12. Манагадзе А.К., Мухамедшин Р.А. // Изв. РАН. Сер. физ. 2013. Т. 77. № 11. С. 1573; Managadze A.K, Mukhamedshin R.A. // Bull. Russ. Acad. Sci. Phys. 2013. V. 77. No. 11. P. 1315.
  13. Royzen I.I. // Mod. Phys. Lett. A. 1994. V. 9. No. 38. P. 3517.
  14. Capdevielle J.N. // Nucl. Phys. B. Proc. Suppl. 2008. V. 175. P. 137.
  15. Yuldashbaev T.S., Nuritdinov Kh., Chudakov V.M. // Nuovo Cimento. 2001. V. 24C. P. 569.
  16. Mukhamedshin R.A. // Nucl. Phys. B. Proc. Suppl. 1999. V. 75A. P. 141.
  17. Wibig T. // arXiv: hep-ph/0003230. 2000.
  18. Anchordoqui L., Dai D.C., Fairbairn M. et al. // Mod. Phys. Lett. A. 2012. V. 27. Art. No. 1250021.
  19. Stojkovic D. // arXiv:1406.2696v1 [gr-qc]. 2014.
  20. The CMS Collaboration // arXiv:1009.4122v1 [hep-ex]. 2010.
  21. Mukhamedshin R.A. // Eur. Phys. J. Plus. 2019. V. 134. P. 584.
  22. Mukhamedshin R.A., Sadykov T. // J. Phys. Conf. Ser. 2019. V. 1181. Art. No. 012089.
  23. Mukhamedshin R.A. // Eur. Phys. J. C. 2022. V. 82. P. 155.
  24. Мухамедшин Р.А. // Изв. РАН. Сер. физ. 2021. Т. 85. № 4. С. 534; Mukhamedshin R.A. // Bull. Russ. Acad. Sci. Phys. 2021. V. 85. No. 4. P. 402.

补充文件

附件文件
动作
1. JATS XML
2.

下载 (583KB)
3.

下载 (1MB)

版权所有 © Р.А. Мухамедшин, 2023