On the study of the space metrics signature from correlations of particles in hadron interactions
- 作者: Mukhamedshin R.A.1
-
隶属关系:
- Institute for Nuclear Research of the Russian Academy of Sciences
- 期: 卷 87, 编号 7 (2023)
- 页面: 962-965
- 栏目: Articles
- URL: https://kld-journal.fedlab.ru/0367-6765/article/view/654347
- DOI: https://doi.org/10.31857/S0367676523701685
- EDN: https://elibrary.ru/OOIAQY
- ID: 654347
如何引用文章
详细
Long-range near-side “ridge” effect discovered by the CMS Collaboration at the LHC, and the coplanarity of subcores in gamma-ray-hadron families, can be reproduced in the framework of the coplanar generation of the most energetic hadrons in hadron interactions, explained, in particular, by the hypothesis of change of the signature of the metric of the space-time continuum, namely, the transformation of the basic three-dimensional state into two-dimensional one (3D ↔ 2D). A method is proposed for experimental verification of this hypothesis by studying the azimuthal correlations of particles in hadron interactions.
作者简介
R. Mukhamedshin
Institute for Nuclear Research of the Russian Academy of Sciences
编辑信件的主要联系方式.
Email: rauf_m@mail.ru
Russia, 117312, Moscow
参考
- Borisov A.S. et al. (Pamir Collaboration) // Proc. 4th ISVHECRI. (Beijing, 1986). P. 4.
- Иваненко И.П., Копенкин В.В., Манагадзе А.К. и др. // Письма в ЖЭТФ. 1992. Т. 50. № 11. С. 192.
- Kopenkin V.V., Managadze A.K., Rakobolskaya I.V. et al. // Phys. Rev. D. 1995. V. 52. P. 2766.
- Pamir Collaboration // Preprint INP MSU. 89-67/144. 1989.
- Borisov A.S., Mukhamedshin R.A., Puchkov V.S. et al. // Nucl. Phys. B. Proc. Suppl. 2001. V. 97. P. 118.
- Xue L., Dai Z.Q., Li J.Y. et al. // Proc. 26th ICRC. V. 1. (Salt Lake City, 1999) P. 127.
- Apanasenko A.V., Dobrotin N.A., Goncharova L.A. et al. // Proc. 15th ICRC. V. 7. (Plovdiv, 1977) P. 220.
- Osedlo V.I., Rakobolskaya I.V., Galkin V.I. et al. // Proc. 27th ICRC. V. 1. (Hamburg, 2001) P. 1426.
- Capdevielle J.N. // J. Phys. G. 1988. V. 14. P. 503.
- Mukhamedshin R.A. // JHEP. 2005. V. 0505. P. 049.
- Mukhamedshin R.A. // Nucl. Phys. B. Proc. Suppl. 2009. V. 196C. P. 98.
- Манагадзе А.К., Мухамедшин Р.А. // Изв. РАН. Сер. физ. 2013. Т. 77. № 11. С. 1573; Managadze A.K, Mukhamedshin R.A. // Bull. Russ. Acad. Sci. Phys. 2013. V. 77. No. 11. P. 1315.
- Royzen I.I. // Mod. Phys. Lett. A. 1994. V. 9. No. 38. P. 3517.
- Capdevielle J.N. // Nucl. Phys. B. Proc. Suppl. 2008. V. 175. P. 137.
- Yuldashbaev T.S., Nuritdinov Kh., Chudakov V.M. // Nuovo Cimento. 2001. V. 24C. P. 569.
- Mukhamedshin R.A. // Nucl. Phys. B. Proc. Suppl. 1999. V. 75A. P. 141.
- Wibig T. // arXiv: hep-ph/0003230. 2000.
- Anchordoqui L., Dai D.C., Fairbairn M. et al. // Mod. Phys. Lett. A. 2012. V. 27. Art. No. 1250021.
- Stojkovic D. // arXiv:1406.2696v1 [gr-qc]. 2014.
- The CMS Collaboration // arXiv:1009.4122v1 [hep-ex]. 2010.
- Mukhamedshin R.A. // Eur. Phys. J. Plus. 2019. V. 134. P. 584.
- Mukhamedshin R.A., Sadykov T. // J. Phys. Conf. Ser. 2019. V. 1181. Art. No. 012089.
- Mukhamedshin R.A. // Eur. Phys. J. C. 2022. V. 82. P. 155.
- Мухамедшин Р.А. // Изв. РАН. Сер. физ. 2021. Т. 85. № 4. С. 534; Mukhamedshin R.A. // Bull. Russ. Acad. Sci. Phys. 2021. V. 85. No. 4. P. 402.
