Optimized frequency recovery of the satellite quantum signal
- Autores: Chernov A.N.1,2,3, Khmelev A.V.1,2,3, Kurochkin V.L.1,2,3,4
-
Afiliações:
- Moscow Institute of Physics and Technology
- International Center for Quantum Optics and Quantum Technologies
- QSpace Technologies LLC
- MISIS National University of Science and Technology
- Edição: Volume 88, Nº 6 (2024)
- Páginas: 975-980
- Seção: Luminescence and Laser Physics
- URL: https://kld-journal.fedlab.ru/0367-6765/article/view/654667
- DOI: https://doi.org/10.31857/S0367676524060206
- EDN: https://elibrary.ru/PFLRJW
- ID: 654667
Citar
Resumo
We developed the frequency recovery method of laser pulses necessary for synchronizing quantum states transmitted from a satellite and registered at a ground station. Experimental modeling of a quantum key distribution session between a satellite and a ground station is also considered. The data obtained during the experiment were used to test the method of recovering the repetition frequency.
Texto integral

Sobre autores
A. Chernov
Moscow Institute of Physics and Technology; International Center for Quantum Optics and Quantum Technologies; QSpace Technologies LLC
Autor responsável pela correspondência
Email: chernov.an@phystech.edu
Rússia, Dolgoprudny; Moscow; Moscow
A. Khmelev
Moscow Institute of Physics and Technology; International Center for Quantum Optics and Quantum Technologies; QSpace Technologies LLC
Email: chernov.an@phystech.edu
Rússia, Dolgoprudny; Moscow; Moscow
V. Kurochkin
Moscow Institute of Physics and Technology; International Center for Quantum Optics and Quantum Technologies; QSpace Technologies LLC; MISIS National University of Science and Technology
Email: chernov.an@phystech.edu
Rússia, Dolgoprudny; Moscow; Moscow; Moscow
Bibliografia
- Wootters W.K., Zurek W.H. // Nature. 1982. V. 299. No. 5886. P. 802.
- Курочкин В.Л., Кривякин Г.К., Зверев А.В. и др. // Изв. РАН. Сер. физ. 2016. Т. 80. № 1. С. 10; Kurochkin V.L., Krivyakin G.K., Zverev A.V. et al. // Bull. Russ. Acad. Sci. Phys. 2016. V. 80. No. 1. P. 5.
- Курочкин В.Л., Неизвестный И.Г. // Изв. РАН. Сер. физ. 2015. Т. 79. № 2. С. 195; Kurochkin V.L., Neizvestnyj I.G. // Bull. Russ. Acad. Sci. Phys. 2015. V. 79. No. 2. P. 173.
- Курочкин В.Л., Коляко А.В. // Изв. РАН. Сер. физ. 2016. Т. 80. № 1. С. 5; Kurochkin V.L., Kolyako A.V. // Bull. Russ. Acad. Sci. Phys. 2016. V. 80. No. 1. P. 1.
- Хмелев А.В., Дуплинский А.В., Майборода В.Ф. и др. // Письма в ЖТФ. 2021. Т. 47. № 17. С. 46; Khmelev A.V., Duplinsky A.V., Mayboroda V.F. et al. // Tech. Phys. Lett. 2021. V. 47. No. 12. P. 858.
- Azuma K., Economou S.E., Elkouss D. et al. // arXiv:2212.10820. 2022.
- Liao S.K., Cai W.Q., Liu W.Y. et al. // Nature. 2017. V. 549. No. 7670. P. 43.
- Wang C.Z., Li Y., Cai W.Q. et al. // Opt. Express. 2021. V. 29. No. 19. P. 29595.
- Wang C., Li Y., Cai W. et al. // Appl. Opt. 2021. V. 60. No. 16. P. 4787.
- Vallone G., Marangon D.G., Canale M. et al. // Phys. Rev. A. 2015. V. 91. No. 4. Art. No. 042320.
- Bienfang J.C., Gross A.J., Mink A. et al. // Opt. Express. 2004. V. 12. No. 9. P. 2011.
- Khmelev A.V., Ivchenko E.I., Miller A.V. et al. // Entropy. 2023. V. 25. No. 4. Art. No. 670.
- https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.cumulative_trapezoid.html
Arquivos suplementares
