Bragg resonances in the yttrium iron garnet – platinum – yttrium iron garnet layered structure

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We studied theoretically the interaction between the spin current in a conductor with a strong spin-orbit coupling (platinum, Pt) and the spin wave in yttrium iron garnet ferromagnetic layers (YIG) with periodic thickness modulation under conditions of Bragg resonances and interlayer coupling. It is shown that in the YIG/Pt/YIG sandwich structure the conditions for two Bragg resonances in the first Brillouin area in the spin wave spectrum are fulfilled. The spin current in Pt allows frequency tuning of the resonances and control the depth of the spin wave band gap corresponding to the resonance conditions.

全文:

受限制的访问

作者简介

N. Lobanov

Saratov State National Research University

编辑信件的主要联系方式.
Email: nl_17@mail.ru
俄罗斯联邦, Saratov

O. Matveev

Saratov State National Research University

Email: nl_17@mail.ru
俄罗斯联邦, Saratov

M. Morozova

Saratov State National Research University

Email: nl_17@mail.ru
俄罗斯联邦, Saratov

参考

  1. Chumak A.V., Vasyuchka V.I., Serga A.A. et al. // Nature Physics. 2015. V. 11. P. 453.
  2. Баранов П.Г., Калашникова А.М., Козуб В.И. и др. // УФН. 2019. Т. 189. С. 849; Baranov P.G., Kalashnikova A.M., Kozub V.I. et al. // Phys. Usp. 2019. V. 62. P. 795.
  3. Brataas A., van Wees B., Klein O. et al. // Phys. Reports. 2020. V. 885. P. 1.
  4. Demidov V.E., Urazhdin S., Anane A. et al. // J. Appl. Phys. 2020. V. 127. Art. No. 170901.
  5. Zhou Y., Jiao H., Chen Y.T. et al. // Phys. Rev. B. 2013. V. 88. Art. No. 184403.
  6. Ando K., Takahashi S., Harii K. et al. // Phys. Rev. Lett. 2008. V. 101. Art. No. 036601.
  7. Demidov V.E., Urazhdin S., Edwards E.R.J., Demokritov S.O. // Appl. Phys. Lett. 2011. V. 99. Art. No. 172501.
  8. Wang X G., Guo G.H., Berakdar J. // Nature Commun. 2020. V. 11. P. 5663.
  9. Temnaya O.S., Safin A.R., Kalyabin D.V. et al. // Phys. Rev. Appl. 2022. V. 18. Art. No. 014003.
  10. Wang X.G., Schulz D., Guo G.H., Berakdar J. // Phys. Rev. Appl. 2022. V. 18. Art. No. 024080.
  11. Chumak A.V., Serga A.A., Hillebrands B. // J. Physics D. 2017. V. 50. Art. No. 244001.
  12. Morozova M.A., Sharaevskaya A. Yu., Sadovnikov A.V. et al. // J. Appl. Phys. 2016. V. 120. Art. No. 223901.
  13. Морозова М.А., Лобанов Н.Д., Матвеев О.В. и др. // Письма в ЖЭТФ. 2022. Т. 115. С. 793; Morozova M.A., Lobanov N.D., Matveev O.V. et al. // JETP Lett. 2022. V. 115. P. 742.
  14. Вашковский А.В., Стальмахов В.С., Шараевский Ю.П. Магнитостатические волны в электронике сверхвысоких частот. Саратов: Изд-во СГУ, 1993.
  15. Ruderman M.A., Kittel C. // Phys. Rev. 1954. V. 96. P. 99.
  16. Marcuse D. Light transmission optics. Bell Laboratory Series. 1972.
  17. Kalinikos B.A., Slavin A.N. // J. Phys. Cond. Matter. 1986. V. 19. P. 7013.
  18. Qin H., Hämäläinen S.J., Arjas K. et al. // Phys. Rev. B. 2018. V. 98. Art. No. 224422.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Schematic of the magnetisation vector precession in MK-1 (a) and MK-2 (b). Schematic of the investigated structure (c)

下载 (170KB)
3. Fig. 2. Schematic of the investigated structure in the zOy projection

下载 (157KB)
4. Fig. 3. Dependence on the magnitude and polarity of ST of the resonance frequencies (solid curves) and (dashed curves) (a), imaginary parts of additions to the Bragg wave number Im(q) for direct waves (curves 1) and reflected waves (curves 2) at different values of χ (dipole coupling and exchange RKKI interaction) (b) (χ1 = 2. 8 × 1019 rad2/ns2, χ2 = 4.1 × 1019 rad2/ns2, χ3 = 5.5 × 1019 rad2/ns2). Calculation parameters: D = 10 nm, M0 = 140 Gs, α = 10-4, L1,2 = 50, c = 25 nm, a = 100 nm, Δ = 40 nm, b = 60 nm, H0 = 800 Å, Aex = 4.7 Gs2 μm2, θSH = 0.08, S = 1, Kex = 728 Gs2 μm, Kdip = 0.2

下载 (179KB)

版权所有 © Russian Academy of Sciences, 2024