Bragg resonances in the yttrium iron garnet – platinum – yttrium iron garnet layered structure

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We studied theoretically the interaction between the spin current in a conductor with a strong spin-orbit coupling (platinum, Pt) and the spin wave in yttrium iron garnet ferromagnetic layers (YIG) with periodic thickness modulation under conditions of Bragg resonances and interlayer coupling. It is shown that in the YIG/Pt/YIG sandwich structure the conditions for two Bragg resonances in the first Brillouin area in the spin wave spectrum are fulfilled. The spin current in Pt allows frequency tuning of the resonances and control the depth of the spin wave band gap corresponding to the resonance conditions.

Full Text

Restricted Access

About the authors

N. D. Lobanov

Saratov State National Research University

Author for correspondence.
Email: nl_17@mail.ru
Russian Federation, Saratov

O. V. Matveev

Saratov State National Research University

Email: nl_17@mail.ru
Russian Federation, Saratov

M. A. Morozova

Saratov State National Research University

Email: nl_17@mail.ru
Russian Federation, Saratov

References

  1. Chumak A.V., Vasyuchka V.I., Serga A.A. et al. // Nature Physics. 2015. V. 11. P. 453.
  2. Баранов П.Г., Калашникова А.М., Козуб В.И. и др. // УФН. 2019. Т. 189. С. 849; Baranov P.G., Kalashnikova A.M., Kozub V.I. et al. // Phys. Usp. 2019. V. 62. P. 795.
  3. Brataas A., van Wees B., Klein O. et al. // Phys. Reports. 2020. V. 885. P. 1.
  4. Demidov V.E., Urazhdin S., Anane A. et al. // J. Appl. Phys. 2020. V. 127. Art. No. 170901.
  5. Zhou Y., Jiao H., Chen Y.T. et al. // Phys. Rev. B. 2013. V. 88. Art. No. 184403.
  6. Ando K., Takahashi S., Harii K. et al. // Phys. Rev. Lett. 2008. V. 101. Art. No. 036601.
  7. Demidov V.E., Urazhdin S., Edwards E.R.J., Demokritov S.O. // Appl. Phys. Lett. 2011. V. 99. Art. No. 172501.
  8. Wang X G., Guo G.H., Berakdar J. // Nature Commun. 2020. V. 11. P. 5663.
  9. Temnaya O.S., Safin A.R., Kalyabin D.V. et al. // Phys. Rev. Appl. 2022. V. 18. Art. No. 014003.
  10. Wang X.G., Schulz D., Guo G.H., Berakdar J. // Phys. Rev. Appl. 2022. V. 18. Art. No. 024080.
  11. Chumak A.V., Serga A.A., Hillebrands B. // J. Physics D. 2017. V. 50. Art. No. 244001.
  12. Morozova M.A., Sharaevskaya A. Yu., Sadovnikov A.V. et al. // J. Appl. Phys. 2016. V. 120. Art. No. 223901.
  13. Морозова М.А., Лобанов Н.Д., Матвеев О.В. и др. // Письма в ЖЭТФ. 2022. Т. 115. С. 793; Morozova M.A., Lobanov N.D., Matveev O.V. et al. // JETP Lett. 2022. V. 115. P. 742.
  14. Вашковский А.В., Стальмахов В.С., Шараевский Ю.П. Магнитостатические волны в электронике сверхвысоких частот. Саратов: Изд-во СГУ, 1993.
  15. Ruderman M.A., Kittel C. // Phys. Rev. 1954. V. 96. P. 99.
  16. Marcuse D. Light transmission optics. Bell Laboratory Series. 1972.
  17. Kalinikos B.A., Slavin A.N. // J. Phys. Cond. Matter. 1986. V. 19. P. 7013.
  18. Qin H., Hämäläinen S.J., Arjas K. et al. // Phys. Rev. B. 2018. V. 98. Art. No. 224422.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Schematic of the magnetisation vector precession in MK-1 (a) and MK-2 (b). Schematic of the investigated structure (c)

Download (170KB)
3. Fig. 2. Schematic of the investigated structure in the zOy projection

Download (157KB)
4. Fig. 3. Dependence on the magnitude and polarity of ST of the resonance frequencies (solid curves) and (dashed curves) (a), imaginary parts of additions to the Bragg wave number Im(q) for direct waves (curves 1) and reflected waves (curves 2) at different values of χ (dipole coupling and exchange RKKI interaction) (b) (χ1 = 2. 8 × 1019 rad2/ns2, χ2 = 4.1 × 1019 rad2/ns2, χ3 = 5.5 × 1019 rad2/ns2). Calculation parameters: D = 10 nm, M0 = 140 Gs, α = 10-4, L1,2 = 50, c = 25 nm, a = 100 nm, Δ = 40 nm, b = 60 nm, H0 = 800 Å, Aex = 4.7 Gs2 μm2, θSH = 0.08, S = 1, Kex = 728 Gs2 μm, Kdip = 0.2

Download (179KB)

Copyright (c) 2024 Russian Academy of Sciences