Generation of optical-terahertz solitons by a few-cycle laser pulse

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The generation of broadband terahertz radiation using an extremely short laser pulse of high intensity is considered. Using numerical simulation of the generalized Yajima-Oikawa system, it is shown that in the generation of an optical-terahertz soliton, in contrast to the quasi-monochromatic case, Kerr nonlinearity plays an important role for a low-period pulse, considering its dispersion.

Texto integral

Acesso é fechado

Sobre autores

А. Kalinovich

Lomonosov Moscow State University

Autor responsável pela correspondência
Email: kalinovich@gmail.com
Rússia, Moscow

S. Sazonov

Lomonosov Moscow State University; National Research Centre “Kurchatov Institute”; Moscow Aviation Institute (National Research University)

Email: kalinovich@gmail.com
Rússia, Moscow; Moscow; Moscow

Bibliografia

  1. Peiponen K.-E., Zeitler A., Kuwata-Gonokami A. Terahertz spectroscopy and imaging. Berlin, Heidelberg: Springer, 2013.
  2. Smirnov S.V., Grachev Ya.V., Tsypkin A.N. et al. // J. Opt. Technol. 2014. V. 81. No. 8. P. 464.
  3. Абдулин У.А., Ляхов Г.А., Руденко О.В., Чиркин А.С. // ЖЭТФ. 1974. Т. 66. № 4. С. 1295; Abdullin U.A., Lyakhov G.A., Rudenko O.V., Chirkin A.S. // Sov. Phys. JETP. 1974. V. 66. No. 4. P. 633.
  4. Багдасарян Б.А., Макарян А.О., Погосян П.С. // Письма в ЖЭТФ. 1983. Т. 37. С. 498; Bagdasaryan B.A., Makaryan A.O., Pogosyan P.S. // JETP Lett. 1983. V. 37. P. 594.
  5. Auston D.H., Cheung K.P., Valdmanis J.A. et al. // Phys. Rev. Lett. 1984. V. 53. P. 1555.
  6. Захаров В.E. // ЖЭТФ. 1972. Т. 62. № 5. С. 1745; Zakharov V.E. // Sov. JETP. 1972. V. 62. No. 5. P. 908.
  7. Benney D.J. // Studies Appl. Math. 1977. V. 56. No. 1. P. 81.
  8. Eilbeck J.C., Gibbon J.D., Caudrey P.J. et al. // J. Phys. A. Math. Nucl. Gen. 1973. V. 6. P. 1337.
  9. Yajima N., Oikawa M. // Progr. Theor. Phys. 1976. V. 56. No. 6. P. 1719.
  10. Сазонов С.В., Соболевский А.Ф. // Письма в ЖЭТФ. 2002. Т. 75. № 12. С. 746; Sazonov S.V., Sobolevskii A.F. // JETP Lett. 2002. V. 75. No. 12. P. 746.
  11. Бугай А.Н., Сазонов С.В. // Письма в ЖЭТФ. 2008. Т. 87. № 8. С. 470; Bugai A.N., Sazonov S.V. // JETP Lett. 2008. V. 87. No. 8. P. 470.
  12. Hattori T., Takeuchi K. // Opt. Express. 2007. V. 15. P. 8076.
  13. Степанов А.Г., Мельников А.А., Компанец В.О., Чикалин С.В. // Письма в ЖЭТФ. 2007. Т. 85. № 5. С. 279; Stepanov A.G., Mel’nikov A.A., Kompanets V.O., Chekalin S.V. // JETP Lett. 2007. V. 85. No. 5. P. 279.
  14. Leblond H., Mihalache D. // Phys. Reports. 2013. V. 523. No. 2. P. 61.
  15. Brabec T., Krausz F. // Rev. Modern Phys. 2000. V. 71. P. 545.
  16. Krausz F., Ivanov M. // Rev. Modern Phys. 2009. V. 81. P. 163.
  17. Козлов С.А., Сазонов С.В. // ЖЭТФ. 1997. Т. 111. № 2. С. 404; Kozlov S.A., Sazonov S.V. // JETP. 1997. V. 111. No. 2. P. 221.
  18. Сазонов С.В., Сухоруков А.П., Устинов Н.В. // Письма в ЖЭТФ. 2014. Т. 100. № 10. С. 703; Sazonov S.V., Sukhorukov A.P., Ustinov N.V. // JETP Lett. 2014. V. 100. No. 10. P. 703.
  19. Калинович А.А., Захарова И.Г., Сазонов С.В. // Изв. РАН. Сер. физ. 2022. Т. 86. № 12. С. 1678; Kalinovich A.A., Zakharova I.G., Sazonov S.V. // Bull. Russ. Acad. Sci. Phys. 2022. V. 86. No. 12. P. 1427.
  20. Сазонов С.В., Сухоруков А.П. // Письма в ЖЭТФ. 2013. Т. 98. № 12. С. 871; Sazonov S.V., Sukhorukov A.P. // JETP Lett. 2013. V. 98. No. 12. P. 871.
  21. Розанов Н.Н. // Опт. и спектроск. 2009. Т. 107. № 5. P. 761; Rosanov N.N. // Opt. Spectrosc. 2009. V. 107. No. 5. P. 721.
  22. Розанов Н.Н. Диссипативные оптические солитоны. От микро- к нано- и атто-. М.: Физматлит, 2011.
  23. Nikogosyan D.N. Nonlinear optical crystals: a complete survey. Berlin: Springer, 2005.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Peak intensities (a) of the optical (solid line) and terahertz (dashed line) components, profiles of the optical (red) and terahertz (blue) components at different distances (b, c, d). Initial amplitude Ψ0 = 1, second- and third-order dispersion coefficients Dk2 = 0.5, Dk3 = 0.5, dispersion of the oscillatory nature of the terahertz signal g = 10–5, quadratic and cubic nonlinearities Dσ = 1, p = 0, number of oscillations N = 10.

Baixar (313KB)
3. Fig. 2. Similar to Fig. 1, with the same parameters, except p = –1.

Baixar (299KB)
4. Fig. 3. Peak intensities (a) of the optical (solid line) and terahertz (dashed line) components, profiles of the optical (red) and terahertz (blue) components at different distances (b, c, d). Initial amplitude Ψ0 = 1, second- and third-order dispersion coefficients Dk2 = 0.5, Dk3 = 0.5, dispersion of the oscillatory nature of the terahertz signal γ = 10–5, quadratic and cubic nonlinearities Dσ = 1, p = 0, number of oscillations N = 3.

Baixar (311KB)
5. Fig. 4. Similar to Fig. 3, with the same parameters, except p = –1.

Baixar (233KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024