Generation of optical-terahertz solitons by a few-cycle laser pulse

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The generation of broadband terahertz radiation using an extremely short laser pulse of high intensity is considered. Using numerical simulation of the generalized Yajima-Oikawa system, it is shown that in the generation of an optical-terahertz soliton, in contrast to the quasi-monochromatic case, Kerr nonlinearity plays an important role for a low-period pulse, considering its dispersion.

全文:

受限制的访问

作者简介

А. Kalinovich

Lomonosov Moscow State University

编辑信件的主要联系方式.
Email: kalinovich@gmail.com
俄罗斯联邦, Moscow

S. Sazonov

Lomonosov Moscow State University; National Research Centre “Kurchatov Institute”; Moscow Aviation Institute (National Research University)

Email: kalinovich@gmail.com
俄罗斯联邦, Moscow; Moscow; Moscow

参考

  1. Peiponen K.-E., Zeitler A., Kuwata-Gonokami A. Terahertz spectroscopy and imaging. Berlin, Heidelberg: Springer, 2013.
  2. Smirnov S.V., Grachev Ya.V., Tsypkin A.N. et al. // J. Opt. Technol. 2014. V. 81. No. 8. P. 464.
  3. Абдулин У.А., Ляхов Г.А., Руденко О.В., Чиркин А.С. // ЖЭТФ. 1974. Т. 66. № 4. С. 1295; Abdullin U.A., Lyakhov G.A., Rudenko O.V., Chirkin A.S. // Sov. Phys. JETP. 1974. V. 66. No. 4. P. 633.
  4. Багдасарян Б.А., Макарян А.О., Погосян П.С. // Письма в ЖЭТФ. 1983. Т. 37. С. 498; Bagdasaryan B.A., Makaryan A.O., Pogosyan P.S. // JETP Lett. 1983. V. 37. P. 594.
  5. Auston D.H., Cheung K.P., Valdmanis J.A. et al. // Phys. Rev. Lett. 1984. V. 53. P. 1555.
  6. Захаров В.E. // ЖЭТФ. 1972. Т. 62. № 5. С. 1745; Zakharov V.E. // Sov. JETP. 1972. V. 62. No. 5. P. 908.
  7. Benney D.J. // Studies Appl. Math. 1977. V. 56. No. 1. P. 81.
  8. Eilbeck J.C., Gibbon J.D., Caudrey P.J. et al. // J. Phys. A. Math. Nucl. Gen. 1973. V. 6. P. 1337.
  9. Yajima N., Oikawa M. // Progr. Theor. Phys. 1976. V. 56. No. 6. P. 1719.
  10. Сазонов С.В., Соболевский А.Ф. // Письма в ЖЭТФ. 2002. Т. 75. № 12. С. 746; Sazonov S.V., Sobolevskii A.F. // JETP Lett. 2002. V. 75. No. 12. P. 746.
  11. Бугай А.Н., Сазонов С.В. // Письма в ЖЭТФ. 2008. Т. 87. № 8. С. 470; Bugai A.N., Sazonov S.V. // JETP Lett. 2008. V. 87. No. 8. P. 470.
  12. Hattori T., Takeuchi K. // Opt. Express. 2007. V. 15. P. 8076.
  13. Степанов А.Г., Мельников А.А., Компанец В.О., Чикалин С.В. // Письма в ЖЭТФ. 2007. Т. 85. № 5. С. 279; Stepanov A.G., Mel’nikov A.A., Kompanets V.O., Chekalin S.V. // JETP Lett. 2007. V. 85. No. 5. P. 279.
  14. Leblond H., Mihalache D. // Phys. Reports. 2013. V. 523. No. 2. P. 61.
  15. Brabec T., Krausz F. // Rev. Modern Phys. 2000. V. 71. P. 545.
  16. Krausz F., Ivanov M. // Rev. Modern Phys. 2009. V. 81. P. 163.
  17. Козлов С.А., Сазонов С.В. // ЖЭТФ. 1997. Т. 111. № 2. С. 404; Kozlov S.A., Sazonov S.V. // JETP. 1997. V. 111. No. 2. P. 221.
  18. Сазонов С.В., Сухоруков А.П., Устинов Н.В. // Письма в ЖЭТФ. 2014. Т. 100. № 10. С. 703; Sazonov S.V., Sukhorukov A.P., Ustinov N.V. // JETP Lett. 2014. V. 100. No. 10. P. 703.
  19. Калинович А.А., Захарова И.Г., Сазонов С.В. // Изв. РАН. Сер. физ. 2022. Т. 86. № 12. С. 1678; Kalinovich A.A., Zakharova I.G., Sazonov S.V. // Bull. Russ. Acad. Sci. Phys. 2022. V. 86. No. 12. P. 1427.
  20. Сазонов С.В., Сухоруков А.П. // Письма в ЖЭТФ. 2013. Т. 98. № 12. С. 871; Sazonov S.V., Sukhorukov A.P. // JETP Lett. 2013. V. 98. No. 12. P. 871.
  21. Розанов Н.Н. // Опт. и спектроск. 2009. Т. 107. № 5. P. 761; Rosanov N.N. // Opt. Spectrosc. 2009. V. 107. No. 5. P. 721.
  22. Розанов Н.Н. Диссипативные оптические солитоны. От микро- к нано- и атто-. М.: Физматлит, 2011.
  23. Nikogosyan D.N. Nonlinear optical crystals: a complete survey. Berlin: Springer, 2005.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Peak intensities (a) of the optical (solid line) and terahertz (dashed line) components, profiles of the optical (red) and terahertz (blue) components at different distances (b, c, d). Initial amplitude Ψ0 = 1, second- and third-order dispersion coefficients Dk2 = 0.5, Dk3 = 0.5, dispersion of the oscillatory nature of the terahertz signal g = 10–5, quadratic and cubic nonlinearities Dσ = 1, p = 0, number of oscillations N = 10.

下载 (313KB)
3. Fig. 2. Similar to Fig. 1, with the same parameters, except p = –1.

下载 (299KB)
4. Fig. 3. Peak intensities (a) of the optical (solid line) and terahertz (dashed line) components, profiles of the optical (red) and terahertz (blue) components at different distances (b, c, d). Initial amplitude Ψ0 = 1, second- and third-order dispersion coefficients Dk2 = 0.5, Dk3 = 0.5, dispersion of the oscillatory nature of the terahertz signal γ = 10–5, quadratic and cubic nonlinearities Dσ = 1, p = 0, number of oscillations N = 3.

下载 (311KB)
5. Fig. 4. Similar to Fig. 3, with the same parameters, except p = –1.

下载 (233KB)

版权所有 © Russian Academy of Sciences, 2024