Condensates of magnetoexcitations in quantum Hall dielectrics

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The formation and spreading in real space of dense ensembles of photoexcitations in integer and fractional quantum Hall dielectrics with filling factors ν = 2 and ν = 1/3 is visualized using a high-aperture high-resolution optical system. A comparative analysis of the correlation between the transport properties and the spatial coherence of these ensembles is carried out.

全文:

受限制的访问

作者简介

A. Gorbunov

Osipyan Institute of Solid-State Physics of the Russian Academy of Sciences

编辑信件的主要联系方式.
Email: gorbunov@issp.ac.ru
俄罗斯联邦, Chernogolovka

A. Larionov

Osipyan Institute of Solid-State Physics of the Russian Academy of Sciences

Email: gorbunov@issp.ac.ru
俄罗斯联邦, Chernogolovka

L. Kulik

Osipyan Institute of Solid-State Physics of the Russian Academy of Sciences

Email: gorbunov@issp.ac.ru
俄罗斯联邦, Chernogolovka

V. Timofeev

Osipyan Institute of Solid-State Physics of the Russian Academy of Sciences

Email: gorbunov@issp.ac.ru
俄罗斯联邦, Chernogolovka

参考

  1. Deng H., Haug H., Yamamoto Y. // Rev. Mod. Phys. 2010. V. 82. P. 1489.
  2. Kulik L.V., Zhuravlev A.S., Dickmann S. et al. // Nature Commun. 2016. V. 7. Art. No. 13499.
  3. Avron J.E., Herbst I.W., Simon B. // Ann. Physics. 1978. V. 114. P. 431.
  4. Kulik L.V., Kuznetsov V.A., Zhuravlev A.S. et al. // Sci. Reports. 2018. V. 8. Art. No. 10948.
  5. Kulik L.V., Gorbunov A.V., Zhuravlev A.S. et al. // Appl. Phys. Lett. 2019. V. 114. Art. No. 062403.
  6. Kulik L.V., Zhuravlev A.S., Musina L.I. et al. // Nature Commun. 2021. V. 12. Art. No. 6477.
  7. Bartolomei H., Kumar M., Bisognina R. et al. // Science. 2020. V. 368. P. 173.
  8. Nakamura J., Liang S., Gardner G.C. et al. // Nature Physics. 2020. V. 16. Art. No. 931.
  9. Kulik L.V., Gorbunov A.V., Zhuravlev A.S. et al. // Sci. Reports. 2015. V. 5. Art. No. 10354.
  10. Kulik L.V., Kukushkin I.V., Dickmann S. et al. // Phys. Rev. B. 2005. V. 72. Art. No. 073304.
  11. Zhuravlev A.S., Kuznetsov V.A., Kulik L.V. et al. // Phys. Rev. Lett. 2016. V. 117. Art. No. 196802.
  12. Kuznetsov V.A., Kulik L.V., Velikanov M.D. et al. // Phys. Rev. B. 2018. V. 98. Art. No. 205303.
  13. Roumpos G., Lohse M., Nitsche W.H. et al. // PNAS. 2012. V. 109. P. 6467.
  14. Борн М., Вольф Э. Основы оптики. М.: Наука, 1973.
  15. Kallin C., Halperin B.I. // Phys. Rev. B. 1985. V. 31. P. 3635.
  16. Dickmann S., Kulik L.V., Kuznetsov V.A. // Phys. Rev. B. 2019. V. 100. Art. No. 155304.
  17. Hohenberg P.C. // Phys. Rev. 1967. V. 158. P. 383.
  18. Березинский В.Л. // ЖЭТФ. 1972. Т. 61. № 3. С. 1144.
  19. Kosterlitz J.M., Thouless D.J. // J. Physics C. 1973. V. 6. P. 1181.
  20. Nitsche W.H., Kim N.Y., Roumpos G. et al. // Phys. Rev. A. 2016. V. 93. Art. No. 053622.
  21. Nitsche W.H., Kim N.Y., Roumpos G. et al. // Phys. Rev. B. 2014. V. 90. Art. No. 205430.
  22. Knüppel P., Ravets S., Kroner M. et al. // Nature. 2019. V. 572. P. 91.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Images of an integer quantum Hall dielectric sample (ν = 2) in FL light (a) and in FRO light at wavelengths λmax (b) and λ2 ≈ λmax - 0.2 nm (c). Ppump = 10 μW. T ≈ 0.55 K. The frame side size is ≈310 μm. FL and FRO spectra recorded under close experimental conditions are shown at the bottom. The diagram on the bottom right illustrates the wave functions and energy levels for TCMEs with generalised impulses q ≈ 0 and q ≈ 1 / lB. The red lines show the corresponding FRO optical transitions

下载 (228KB)
3. Fig. 2. Spatial distribution profile of the FRO signal from the photoexcitation region of a fractional quantum Hall insulator (n = 1/3. The dots are the results of measurements at the indicated pumping/probing powers. The grey curve is the Gaussian distribution profile with a radius of 5 μm. T ≈ 0.55 K

下载 (201KB)
4. Fig. 3. Coherence of ensembles of magnetic excitations in integer (a) and fractional (b) quantum Hall insulators. The green line is the profile of the interference fringes in FRO light: |g(1)(δ)cosΦ(δ)|. (a) ν = 2, Ppump = Pprobe = 1 µW. The red line is the weighted sum of the hardware function and its convolution with the exponent at ξ = 10 μm. The blue line is the function (0.18/|δ|)0.6. (b) ν = 1/3, Ppump / probe = 80 µW. The red curve is the hardware function that best describes the centre peak. T ≈ 0.55 K

下载 (221KB)

版权所有 © Russian Academy of Sciences, 2024