Giant Planar Hall Effect in an Ultra-Pure Mercury Selenide Single Crystal Sample

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A giant planar Hall effect with an amplitude of about 50 mΩ cm at a temperature of T = 80 K in a magnetic field of 10 T has been detected in an ultra-pure HgSe single crystal sample with an electron density of 5.5 × 1015 cm–3. Its oscillating dependence on the rotation angle of the sample in various magnetic fields has been determined. Attributes (oscillation period, positions of extrema, correlation between the amplitudes of planar Hall and planar longitudinal magnetoresistance) indicate that the planar Hall effect in this nonmagnetic gapless semimetal with an isotropic Fermi surface originates from the chiral anomaly. This is a solid argument for the topological nature of the electronic spectrum of HgSe.

About the authors

S. B. Bobin

Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences

Email: bobin@imp.uran.ru
620108, Yekaterinburg, Russia

A. T. Lonchakov

Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences

Author for correspondence.
Email: bobin@imp.uran.ru
620108, Yekaterinburg, Russia

References

  1. C. Goldberg and R.E. Davis, Phys. Rev. 94, 1121 (1954).
  2. Y. You, Y. Gong, H. Li, Z. Li, M. Zhu, J. Tang, E. Liu, Y. Yao, G. Xu, F. Xu, and W. Wang, Phys. Rev. B 100, 134441 (2019).
  3. K.M. Seemann, F. Freimuth, H. Zhang, S. Bl�ugel, Y. Mokrousov, D.E. B�urgler, and C.M. Schneider, Phys. Rev. Lett. 107, 086603 (2011).
  4. Y. Liu, J. Yang, W. Wang, H. Du, W. Ning, L. Ling, W. Tong, Z. Qu, G. Cao, Y. Zhang, and M. Tian, Phys. Rev. B 95, 161103 (2017).
  5. J. Li, S.L. Li, Z.W. Wu, S. Li, H. F. Chu, J. Wang, Y. Zhang, H.Y. Tian, and D.N. Zheng, J. Phys. Condens. Matter 22, 146006 (2010).
  6. H.X. Tang, R.K. Kawakami, D.D. Awschalom, and M. L. Roukes, Phys. Rev. Lett. 90, 107201 (2003).
  7. D. Thompson, L. Romankiw, and A. Mayadas, IEEE Trans. Magn. 11, 1039 (1975).
  8. Y. Bason, L. Klein, J.-B. Yau, X. Hong, J. Hoffman, and C.H. Ahn, J. Appl. Phys. 99, 08R701 (2006).
  9. F.N.V. Dau, A. Schuhl, J.R. Childress, and M. Sussiau, Sensors and Actuators A: Physical 53, 256 (1996).
  10. S.M. Young, S. Zaheer, J.C.Y. Teo, C. L. Kane, E. J. Mele, and A.M. Rappe, Phys. Rev. Lett. 108, 140405 (2012).
  11. Z. Wang, Y. Sun, X.-Q. Chen, C. Franchini, G. Xu, H. Weng, X. Dai, and Z. Fang, Phys. Rev. B 85, 195320 (2012).
  12. Z. Wang, H. Weng, Q. Wu, X. Dai, and Z. Fang, Phys. Rev. B 88, 125427 (2013).
  13. S.-M. Huang, S.-Y. Xu, I. Belopolski, C.-C. Lee, G. Chang, B.K. Wang, N. Alidoust, G. Bian, M. Neupane, C. Zhang, S. Jia, A. Bansil, H. Lin, and M. Z. Hasan, Nat. Commun. 6, 7373 (2015).
  14. H. Weng, C. Fang, Z. Fang, B.A. Bernevig, and X. Dai, Phys. Rev. X 5, 011029 (2015).
  15. S.-Y. Xu, I. Belopolski, N. Alidoust et al. (Collaboration), Science 349, 613 (2015).
  16. B.Q. Lv, H.M. Weng, B.B. Fu, X.P. Wang, H. Miao, J. Ma, P. Richard, X.C. Huang, L.X. Zhao, G. F. Chen, Z. Fang, X. Dai, T. Qian, and H. Ding, Phys. Rev. X 5, 031013 (2015).
  17. A.A. Burkov, Nature Mater. 15, 1145 (2016).
  18. A.A. Burkov, Phys. Rev. B 96, 041110 (2017).
  19. S. Nandy, G. Sharma, A. Taraphder, and S. Tewari, Phys. Rev. Lett. 119, 176804 (2017).
  20. H.B. Nielsen and M. Ninomiya, Phys. Lett. B 130, 389 (1983).
  21. T.D.C. Bevan, A. J. Manninen, J.B. Cook, J.R. Hook, H.E. Hall, T. Vachaspati, and G. E. Volovik, Nature 386, 689 (1997).
  22. P. Li, C.H. Zhang, J.W. Zhang, Y. Wen, and X.X. Zhang, Phys. Rev. B 98, 121108 (2018).
  23. S. Xu, H. Wang, X.-Y. Wang, Y. Su, P. Cheng, and T.-L. Xia, arXiv (2018), https://arxiv.org/abs/1811.06767.
  24. Sonika, M.K. Hooda, S. Sharma, and C. S. Yadav, Appl. Phys. Lett. 119, 261904 (2021).
  25. H. Li, H.-W. Wang, H. He, J. Wang, and S.-Q. Shen, Phys. Rev. B 97, 201110 (2018).
  26. M. Wu, G. Zheng, W. Chu, Y. Liu, W. Gao, H. Zhang, J. Lu, Y. Han, J. Zhou, W. Ning, and M. Tian, Phys. Rev. B 98, 161110 (2018).
  27. R. Singha, S. Roy, A. Pariari, B. Satpati, and P. Mandal, Phys. Rev. B 98, 081103(R) (2018).
  28. A. Vashist, R.K. Singh, N. Wadehra, S. Chakraverty, and Y. Singh, arXiv (2018), https://arxiv.org/abs/1812.06485.
  29. S. Liang, J. Lin, S. Kushwaha, J. Xing, N. Ni, R. J. Cava, and N.P. Ong, Phys. Rev. X 8, 031002 (2018).
  30. N. Kumar, S.N. Guin, C. Felser, and C. Shekhar, Phys. Rev. B 98, 041103 (2018).
  31. F.C. Chen, X. Luo, J. Yan, Y. Sun, H.Y. Lv, W. J. Lu, C.Y. Xi, P. Tong, Z.G. Sheng, X.B. Zhu, W.H. Song, and Y.P. Sun, Phys. Rev. B 98, 041114 (2018).
  32. P. Li, C. Zhang, Y. Wen, L. Cheng, G. Nichols, D.G. Cory, G.-X. Miao, and X.-X. Zhang, Phys. Rev. B 100, 205128 (2019).
  33. Q.R. Zhang, B. Zeng, Y.C. Chiu et al. (Collaboration), Phys. Rev. B 100, 115138 (2019).
  34. Q. Liu, F. Fei, B. Chen, X. Bo, B. Wei, S. Zhang, M. Zhang, F. Xie, M. Naveed, X. Wan, F. Song, and B. Wang, Phys. Rev. B 99, 155119 (2019).
  35. Z. Li, T. Xiao, R. Zou, J. Li, Y. Zhang, Y. Zeng, M. Zhou, J. Zhang, and W. Wu, J. Appl. Phys. 127, 054306 (2020).
  36. D.E. Kharzeev, Progress in Particle and Nuclear Physics 75, 133 (2014).
  37. B. Z. Spivak and A.V. Andreev, Phys. Rev. B 93, 085107 (2016).
  38. A.A. Burkov, Phys. Rev. B 91, 245157 (2015).
  39. Q. Li, D.E. Kharzeev, C. Zhang, Y. Huang, I. Pletikosi, A.V. Fedorov, R.D. Zhong, J.A. Schneeloch, G.D. Gu, and T. Valla, Nat. Phys 12, 550 (2016).
  40. A. Sekine, D. Culcer, and A.H. MacDonald, Phys. Rev. B 96, 235134 (2017).
  41. A.T. Lonchakov and S.B. Bobin, J. Phys. Condens. Matter 35, 065501 (2023).
  42. A.T. Lonchakov, S.B. Bobin, V.V. Deryushkin, V. I. Okulov, T.E. Govorkova, and V.N. Neverov, Appl. Phys. Lett. 112, 082101 (2018).
  43. S.B. Bobin, A.T. Lonchakov, V.V. Deryushkin, and V.N. Neverov, J. Phys. Condens. Matter 31, 115701 (2019).
  44. A.T. Lonchakov, S.B. Bobin, V.V. Deryushkin, and V.N. Neverov, J. Phys. Condens. Matter 31, 405706 (2019).
  45. C.R. Whitsett, Phys. Rev. 138, A829 (1965).
  46. I.M. Tsidilkovski, Electron Spectrum of Gapless Semiconductors, Springer, Berlin, N.Y. (1996).
  47. C.-L. Zhang, S.-Y. Xu, I. Belopolski et al. (Collaboration), Nat. Commun. 7, 10735 (2016).
  48. X. Huang, L. Zhao, Y. Long, P.Wang, D. Chen, Z. Yang, H. Liang, M. Xue, H. Weng, Z. Fang, X. Dai, and G. Chen, Phys. Rev. X 5, 031023 (2015).
  49. C. Shekhar, A.K. Nayak, Y. Sun et al. (Collaboration), Nat. Phys. 11, 645 (2015).
  50. Z. Wang, Y. Zheng, Z. Shen, Y. Lu, H. Fang, F. Sheng, Y. Zhou, X. Yang, Y. Li, C. Feng, and Z.-A. Xu, Phys. Rev. B 93, 121112 (2016).
  51. J. Du, H. Wang, Q. Chen, Q.H. Mao, R. Khan, B. J. Xu, Y.X. Zhou, Y.N. Zhang, J.H. Yang, B. Chen, C.M. Feng, and M.H. Fang, Science China Physics, Mechanics & Astronomy 59, 657406 (2016).
  52. W. Gao, M. Han, Z. Chen, A. Zhu, Y. Han, M. Zhu, X. Zhu, and M. Tian, Appl. Phys. Lett. 122, 173102 (2023).

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Российская академия наук