Lattice Study of the Equation of State of a Rotating Gluon Plasma

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The effect of uniform rotation on the equation of state of gluodynamics has been studied in lattice simulation. To this end, the system has been considered in the corotating reference frame, where the rotation can be modeled as an external gravitational field. The free energy of the studied system in the case of sufficiently slow rotation can be expanded in a power series in the angular velocity. The moment of inertia given by the second-order coefficient of this expansion has been calculated and its dependence on the temperature and the dimensions of the rotating system has been determined. Our results indicate that the moment of inertia of gluodynamics is negative up to the temperature T * ~ 1.5Tc, where Tc is the critical temperature of the confinement/deconfinement phase transition, and becomes positive at temperatures T > T *. The negative moment of inertia has been attributed to the thermodynamic instability of the gluon plasma with respect to uniform rotation.

作者简介

V. Braguta

Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, 141980, Dubna, Moscow region, Russia

Email: vvbraguta@theor.jinr.ru

I. Kudrov

Moscow Institute of Physics and Technology (National Research University), 141700, Dolgoprudnyi, Moscow region, Russia; Institute for High Energy Physics, National Research Center Kurchatov Institute, 142281, Protvino, Moscow region, Russia

Email: ilyakudrov@yandex.ru

A. Roenko

Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, 141980, Dubna, Moscow region, Russia; Dubna State University, 141980, Dubna, Moscow region, Russia

Email: roenko@theor.jinr.ru

D. Sychev

Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, 141980, Dubna, Moscow region, Russia; Moscow Institute of Physics and Technology (National Research University), 141700, Dolgoprudnyi, Moscow region, Russia

Email: sychev.da@phystech.edu

M. Chernodub

Institut Denis Poisson UMR 7013, Université de Tours, 37200, Tours, France

编辑信件的主要联系方式.
Email: maxim.chernodub@univ-tours.fr

参考

  1. L. Adamczyk, J.K. Adkins, G. Agakishev, et al. (STAR), Nature 548, 62 (2017); arXiv:1701.06657 [nuclex].
  2. S. Ebihara, K. Fukushima, and K. Mameda, Phys. Lett. B 764, 94 (2017); arXiv:1608.00336 [hep-ph].
  3. M. Chernodub and S. Gongyo, JHEP 01, 136 (2017); arXiv:1611.02598 [hep-th].
  4. Y. Jiang and J. Liao, Phys. Rev. Lett. 117, 192302 (2016); arXiv:1606.03808 [hep-ph].
  5. H. Zhang, D. Hou, and J. Liao, Chin. Phys. C 44, 111001 (2020); arXiv:1812.11787 [hep-ph].
  6. X. Wang, M. Wei, Z. Li, and M. Huang, Phys. Rev. D 99, 016018 (2019); arXiv:1808.01931 [hep-ph].
  7. M.N. Chernodub, Phys. Rev. D 103, 054027 (2021); arXiv:2012.04924 [hep-ph].
  8. X. Chen, L. Zhang, D. Li, D. Hou, and M. Huang, JHEP 07, 132 (2021); arXiv:2010.14478 [hep-ph].
  9. N. Sadooghi, S.M.A. Tabatabaee Mehr, and F. Taghinavaz, Phys. Rev. D 104, 116022 (2021); arXiv:2108.12760 [hep-ph].
  10. Y. Fujimoto, K. Fukushima, and Y. Hidaka, Phys. Lett. B 816, 136184 (2021); arXiv:2101.09173 [hepph].
  11. A.A. Golubtsova, E. Gourgoulhon, and M.K. Usova, Nucl. Phys. B 979, 115786 (2022); arXiv:2107.11672 [hep-th].
  12. Y.-Q. Zhao, S. He, D. Hou, L. Li, and Z. Li (2022), arXiv:2212.14662 [hep-ph].
  13. A.A. Golubtsova and N. S. Tsegel'nik (2022), arXiv:2211.11722 [hep-th].
  14. N.R.F. Braga, L. F. Ferreira, and O.C. Junqueira (2023), arXiv:2301.01322 [hep-th].
  15. M.N. Chernodub (2022), arXiv:2210.05651 [quant-ph].
  16. M.N. Chernodub, (2022), arXiv:2208.04808 [hepth].
  17. S. Chen, K. Fukushima, and Y. Shimada, Phys. Rev. Lett. 129, 242002 (2022); arXiv:2207.12665 [hep-ph].
  18. A. Yamamoto and Y. Hirono, Phys. Rev. Lett. 111, 081601 (2013); arXiv:1303.6292 [hep-lat].
  19. V.V. Braguta, A.Y. Kotov, D.D. Kuznedelev, and A.A. Roenko, JETP Lett. 112, 6 (2020).
  20. V.V. Braguta, A.Y. Kotov, D.D. Kuznedelev, and A.A. Roenko, Phys. Rev. D 103, 094515 (2021); arXiv:2102.05084 [hep-lat].
  21. M.N. Chernodub, V.A. Goy, and A.V. Molochkov, (2022), arXiv:2209.15534 [hep-lat].
  22. V.V. Braguta, A. Kotov, A. Roenko, and D. Sychev, PoS LATTICE2022, 190 (2023); arXiv:2212.03224 [hep-lat].
  23. V. Braguta, A.Y. Kotov, D. Kuznedelev, and A. Roenko, PoS LATTICE2021, 125 (2022); arXiv:2110.12302 [hep-lat].
  24. G. Boyd, J. Engels, F. Karsch, E. Laermann, C. Legeland, M. Lutgemeier, and B. Petersson, Nucl. Phys. B 469, 419 (1996); arXiv:heplat/9602007.
  25. C. Bonati, M. D'Elia, M. Mariti, F. Negro, and F. Sanfilippo, Phys. Rev. D 89, 054506 (2014); arXiv:1310.8656 [hep-lat].
  26. A. Bazavov, T. Bhattacharya, C. DeTar et al. (HotQCD), Phys. Rev. D 90, 094503 (2014); arXiv:1407.6387 [hep-lat].
  27. S. Bors'anyi, Z. Fodor, C. Hoelbling, S.D. Katz, S.Krieg, and K.K. Szab'o, Phys. Lett. B 730, 99 (2014).
  28. J.N. Guenther, R. Bellwied, S. Borsanyi, Z. Fodor, S.D. Katz, A. Pasztor, C. Ratti, and K.K. Szab'o, Nucl. Phys. A 967, 720 (2017); arXiv:1607.02493 [hep-lat].
  29. V.V. Braguta, M.N. Chernodub, A.A. Roenko, and D.A. Sychev (2023), arXiv:2303.03147 [hep-lat].
  30. G. Curci, P. Menotti, and G. Paffuti, Phys. Lett. B 130, 205 (1983).
  31. M. L¨uscher and P.Weisz, Phys. Lett. B 158, 250 (1985).
  32. J. Lonˇcar, B. Igrec, and D. Babi'c, Symmetry 14, 529 (2022).
  33. M.N. Chernodub, Phys. Rev. D 87, 025021 (2013); arXiv:1207.3052 [quant-ph].
  34. A. Flachi and M. Edmonds, Phys. Rev. D 107, 025008 (2023); arXiv:2212.02776 [hep-th].
  35. B. F. Whiting and J.W. York, Jr., Phys. Rev. Lett. 61, 1336 (1988).
  36. T. Prestidge, Phys. Rev. D 61, 084002 (2000); 10.1103/physrevd.61.084002.
  37. H. S. Reall, Phys. Rev. D 64, 044005 (2001); 10.1103/physrevd.64.044005.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Российская академия наук, 2023