Generation of Long-Wavelength Stimulated Emission in HgCdTe Quantum Wells with an Increased Auger Recombination Threshold

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Various designs of dielectric waveguides made of heterostructures with CdHgTe quantum wells grown by molecular beam epitaxy have been studied to generate stimulated emission in the 15–30 μm wavelength range. The reduction of radiation losses in optimized structures has made it possible to reduce the threshold intensity of the generation of stimulated emission to ~100 W/cm2. Modernized growth technology has ensured the reduction of the residual cadmium content in HgCdTe quantum wells to 2.5%, which has allowed us to increase the threshold energy of Auger recombination, as well as the maximum temperature for the observation of stimulated emission at interband transitions above 100 K. The results obtained are prerequisites for the implementation of coherent radiation sources exceeding in characteristics of lead–tin chalcogenide lasers used in the 15–30 μm spectral range.

作者简介

K. Mazhukina

Institute for Physics of Microstructures, Russian Academy of Sciences;Lobachevsky National Research University of Nizhny Novgorod

Email: mazhukina@ipmras.ru
603087, Nizhny Novgorod, Russia;603950, Nizhny Novgorod, Russia

V. Rumyantsev

Institute for Physics of Microstructures, Russian Academy of Sciences

Email: mazhukina@ipmras.ru
603087, Nizhny Novgorod, Russia

A. Dubinov

Institute for Physics of Microstructures, Russian Academy of Sciences;Lobachevsky National Research University of Nizhny Novgorod

Email: mazhukina@ipmras.ru
603087, Nizhny Novgorod, Russia;603950, Nizhny Novgorod, Russia

V. Utochkin

Institute for Physics of Microstructures, Russian Academy of Sciences

Email: mazhukina@ipmras.ru
603087, Nizhny Novgorod, Russia

A. Razova

Institute for Physics of Microstructures, Russian Academy of Sciences

Email: mazhukina@ipmras.ru
603087, Nizhny Novgorod, Russia

M. Fadeev

Institute for Physics of Microstructures, Russian Academy of Sciences

Email: mazhukina@ipmras.ru
603087, Nizhny Novgorod, Russia

K. Spirin

Lebedev Physical Institute, Russian Academy of Sciences

Email: mazhukina@ipmras.ru
119991, Moscow, Russia

M. Zholudev

Institute for Physics of Microstructures, Russian Academy of Sciences;Lobachevsky National Research University of Nizhny Novgorod

Email: mazhukina@ipmras.ru
603087, Nizhny Novgorod, Russia;603950, Nizhny Novgorod, Russia

N. Mikhaylov

Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: mazhukina@ipmras.ru
630090, Novosibirsk, Russia

参考

  1. M. S. Vitiello, G. Scalari, B. Williams, and P. De Natale, Opt. Express 23, 5167 (2015).
  2. R. J. Falconer and A. G. Markelz, J. Infrared Millim. Terahertz Waves 33, 973 (2012).
  3. O. Pirali, N.-T. Van-Oanh, P. Parneix, M. Vervloet, and P. Brechignac, Phys. Chem. Chem. Phys. 8(32), 3707 (2006).
  4. K. H. Michaelian, Q. Wen, B. E. Billinghurst, J. M. Shaw, and V. Lastovka, Vib. Spectrosc 58, 50 (2012).
  5. F. Cataldo, D. A. Garcia-Hernandez, and A. Manchado, Mon. Not. R. Astron. Soc. 429(4), 3025 (2013).
  6. M. Lamperti, R. Gotti, D. Gatti, M. K. Shakfa, E. Cane, F. Tamassia, P. Schunemann, P. Laporta, A. Farooq, and M. Marangoni, Commun. Phys. 3(1), 1 (2020).
  7. Л. Н. Курбатов, А. Д. Бритов, С. М. Караваев, С. Д. Сиваченко, С. Н. Максимовский, И. И. Овчинников, М. М. Рзаев, П. М. Старик, Письма в ЖЭТФ 37(9), 422 (1983).
  8. К. В. Маремьянин, А. В. Иконников, Л. С. Бовкун, В. В. Румянцев, Е. Г. Чижевский, И. И. Засавицкий, В. И. Гавриленко, Физика и техника полупроводников 52(12), 1486 (2018).
  9. К. В. Маремьянин, А. В. Иконников, А. В. Антонов, В. В. Румянцев, С. В. Морозов, Л. С. Бовкун, К. Р. Умбеталиева, Е. Г. Чижевский, И. И. Засавицкий, В. И. Гавриленко, Физика и техника полупроводников 49(12), 1672 (2015).
  10. A. R. Adams, C. T. Elliott, A. Krier, B. N. Murdin, and M. Tacke, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 359, 547 (2001).
  11. D. N. Talwar and M. Vandevyver, J. Appl. Phys. 56(6), 1601 (1984).
  12. V. M. Menon, L. R. Ram-Mohan, I. Vurgaftman, and J. R. Meyer, J. Electron. Mater. 29(6), 865 (2000).
  13. I. Vurgaftman and J. R.Meyer, Opt. Express 2(4), 137 (1998).
  14. L. Lunczer, P. Leubner, M. Endres, V. L. Mu¨ller, C. Bru¨ne, H. Buhmann, and L. W. Molenkamp, Phys. Rev. Lett. 123(4), 47701 (2019).
  15. S. Gebert, C. Consejo, S. S. Krishtopenko et al. (Collaboration), Nat. Photonics 17(3), 244 (2023).
  16. S. V. Morozov, V. V.Rumyantsev, M. S. Zholudev, A. A. Dubinov, V. Ya. Aleshkin, V. V. Utochkin, M. A. Fadeev, K. E. Kudryavtsev, N. N. Mikhailov, S. A. Dvoretskii, V. I. Gavrilenko, and F. Teppe, ACS Photonics 8, 3526 (2021).
  17. V. V.Rumyantsev, A. A. Dubinov, V. V. Utochkin, M. A. Fadeev, V. Ya. Aleshkin, A. A. Razova, N. N. Mikhailov, S. A. Dvoretsky, V. I. Gavrilenko, and S. V. Morozov, Appl. Phys. Lett. 121, 182103 (2022).
  18. V. A. Shvets, N. N. Mikhailov, D. G. Ikusov, I. N. Uzhakov, and S. A. Dvoretskii, Opt. Spectrosc. 127(2), 34 (2019).
  19. V. V.Rumyantsev, A. A. Razova, L. S. Bovkun et al. (Collaboration), Nanomaterials 11, 1855 (2021).
  20. H. C. Casey and M. B. Panich, Heterostructure lasers, Academic Press, N.Y. (1978).
  21. A. Afonenko, D. Ushakov, G. Alymov, A. Dubinov, S. Morozov, V. Gavrilenko, and D. Svintsov, Journal of Physics D: Applied Physics 54(17), 175108 (2021).
  22. V. Ya. Aleshkin, V. V.Rumyantsev, K. E. Kudryavtsev, A. A. Dubinov, V. V. Utochkin, M. A. Fadeev, G. Alymov, N. N. Mikhailov, S. A. Dvoretsky, F. Teppe, V. I. Gavrilenko, and S. V. Morozov, J. Appl. Phys. 129, 133106 (2021).
  23. В. В. Румянцев, Н. С. Куликов, А. М. Кадыков, М. А. Фадеев, А. В. Иконников, А. С. Казаков, М. С. Жолудев, В. Я. Алешкин, В. В. Уточкин, Н. Н. Михайлов, С. А. Дворецкий, С. В. Морозов, В. И. Гавриленко, Физика и техника полупроводников 52(11), 1263 (2018).

补充文件

附件文件
动作
1. JATS XML

版权所有 © Российская академия наук, 2023