“Capillary” Structures in Transversely Trapped Nonlinear Optical Beams

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A mathematical analogy between paraxial optics with two circular polarizations of light in a defocusing Kerr medium with positive dispersion, binary Bose–Einstein condensates of cold atoms in the phase separation regime, and hydrodynamics of two immiscible compressible liquids can help in theoretical search for unknown three-dimensional coherent optical structures. In this work, transversely trapped (by a smooth profile of the refractive index) light beams are considered and new numerical examples are presented, including a “floating drop,” a precessing longitudinal optical vortex with an inhomogeneous profile of filling with the second component, and the combination of a drop and a vortex filament. Filled vortices that are perpendicular to the beam axis and propagate at large distances have also been simulated.

作者简介

V. Ruban

Landau Institute for Theoretical Physics, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: ruban@itp.ac.ru
142432, Chernogolovka, Moscow region, Russia

参考

  1. А.Л. Берхоер, В.Е. Захаров, ЖЭТФ 58, 903 (1970).
  2. Y. Kivshar and G. P. Agrawal, Optical Solitons: From Fibers to Photonic Crystals, 1st ed., Academic Press, California, USA (2003).
  3. V.E. Zakharov and S. Wabnitz, Optical Solitons: Theoretical Challenges and Industrial Perspectives, Springer-Verlag, Berlin, Heidelberg (1999).
  4. B.A. Malomed, Multidimensional Solitons, AIP Publishing (online), Melville, N.Y. (2022), https://doi.org/10.1063/9780735425118.
  5. T.-L. Ho and V.B. Shenoy, Phys. Rev. Lett. 77, 3276 (1996).
  6. H. Pu and N.P. Bigelow, Phys. Rev. Lett. 80, 1130 (1998).
  7. B. P. Anderson, P.C. Haljan, C. E. Wieman, and E.A. Cornell, Phys. Rev. Lett. 85, 2857 (2000).
  8. S. Coen and M. Haelterman, Phys. Rev. Lett. 87, 140401 (2001).
  9. G. Modugno, M. Modugno, F. Riboli, G. Roati, and M. Inguscio, Phys. Rev. Lett. 89, 190404 (2002).
  10. E. Timmermans, Phys. Rev. Lett. 81, 5718 (1998).
  11. P. Ao and S.T. Chui, Phys. Rev. A 58, 4836 (1998).
  12. B. Van Schaeybroeck, Phys. Rev. A 78, 023624 (2008).
  13. K. Sasaki, N. Suzuki, and H. Saito, Phys. Rev. A 83, 033602 (2011).
  14. H. Takeuchi, N. Suzuki, K. Kasamatsu, H. Saito, and M. Tsubota, Phys. Rev. B 81, 094517 (2010).
  15. N. Suzuki, H. Takeuchi, K. Kasamatsu, M. Tsubota, and H. Saito, Phys. Rev. A 82, 063604 (2010).
  16. H. Kokubo, K. Kasamatsu, and H. Takeuchi, Phys. Rev. A 104, 023312 (2021).
  17. K. Sasaki, N. Suzuki, D. Akamatsu, and H. Saito, Phys. Rev. A 80, 063611 (2009).
  18. S. Gautam and D. Angom, Phys. Rev. A 81, 053616 (2010).
  19. T. Kadokura, T. Aioi, K. Sasaki, T. Kishimoto, and H. Saito, Phys. Rev. A 85, 013602 (2012).
  20. K. Sasaki, N. Suzuki, and H. Saito, Phys. Rev. A 83, 053606 (2011).
  21. D. Kobyakov, V. Bychkov, E. Lundh, A. Bezett, and M. Marklund, Phys. Rev. A 86, 023614 (2012).
  22. D.K. Maity, K. Mukherjee, S. I. Mistakidis, S. Das, P.G. Kevrekidis, S. Majumder, and P. Schmelcher, Phys. Rev. A 102, 033320 (2020).
  23. K. Kasamatsu, M. Tsubota, and M. Ueda, Phys. Rev. Lett. 91, 150406 (2003).
  24. K. Kasamatsu and M. Tsubota, Phys. Rev. A 79, 023606 (2009).
  25. P. Mason and A. Aftalion, Phys. Rev. A 84, 033611 (2011).
  26. K. Kasamatsu, M. Tsubota, and M. Ueda, Phys. Rev. Lett. 93, 250406 (2004).
  27. H. Takeuchi, K. Kasamatsu, M. Tsubota, and M. Nitta, Phys. Rev. Lett. 109, 245301 (2012).
  28. M. Nitta, K. Kasamatsu, M. Tsubota, and H. Takeuchi, Phys. Rev. A 85, 053639 (2012).
  29. K. Kasamatsu, H. Takeuchi, M. Tsubota, and M. Nitta, Phys. Rev. A 88, 013620 (2013).
  30. В.П. Рубан, Письма в ЖЭТФ 113, 848 (2021).
  31. K. J.H. Law, P.G. Kevrekidis, and L. S. Tuckerman, Phys. Rev. Lett. 105, 160405 (2010); Erratum: Phys. Rev. Lett. 106, 199903 (2011).
  32. M. Pola, J. Stockhofe, P. Schmelcher, and P.G. Kevrekidis, Phys. Rev. A 86, 053601 (2012).
  33. S. Hayashi, M. Tsubota, and H. Takeuchi, Phys. Rev. A 87, 063628 (2013).
  34. A. Richaud, V. Penna, R. Mayol, and M. Guilleumas, Phys. Rev. A 101, 013630 (2020).
  35. A. Richaud, V. Penna, and A. L. Fetter, Phys. Rev. A 103, 023311 (2021).
  36. В.П. Рубан, Письма в ЖЭТФ 113, 539 (2021).
  37. V.P. Ruban, W. Wang, C. Ticknor, and P.G. Kevrekidis, Phys. Rev. A 105, 013319 (2022).
  38. В.П. Рубан, Письма в ЖЭТФ 115, 450 (2022).
  39. В.Е. Захаров, А.В. Михайлов, Письма в ЖЭТФ 45, 279 (1987).
  40. S. Pitois, G. Millot, and S. Wabnitz, Phys. Rev. Lett. 81, 1409 (1998).
  41. M. Haelterman and A.P. Sheppard, Phys. Rev. E 49, 3389 (1994).
  42. M. Haelterman and A.P. Sheppard, Phys. Rev. E 49, 4512 (1994).
  43. A.P. Sheppard and M. Haelterman, Opt. Lett. 19, 859 (1994).
  44. N. Dror, B.A. Malomed, and J. Zeng, Phys. Rev. E 84, 046602 (2011).
  45. Yu. S. Kivhsar and B. Luther-Davies, Phys. Rep. 298, 81 (1998).
  46. A.H. Carlsson, J.N. Malmberg, D. Anderson, M. Lisak, E.A. Ostrovskaya, T. J. Alexander, and Yu. S. Kivshar, Opt. Lett. 25, 660 (2000).
  47. A. S. Desyatnikov, L. Torner, and Yu. S. Kivshar, Progress in Optics 47, 291 (2005).
  48. S. Raghavan and G. P. Agrawal, Opt. Commun. 180, 377 (2000).
  49. S. Longhi, Opt. Lett. 28, 2363 (2003).
  50. A. Mafi, J. Light. Technol. 30, 2803 (2012).
  51. C.M. Arabi, A. Kudlinski, A. Mussot, and M. Conforti, Phys. Rev. A 97, 023803 (2018).
  52. T. Mayteevarunyoo, B.A. Malomed, and D.V. Skryabin, J. Opt. 23, 015501 (2020).
  53. L.G. Wright, F.O. Wu, D.N. Christodoulides, and F.W. Wise, Nat. Phys. 18, 1018 (2022).
  54. http://home.itp.ac.ru/~ruban/27DEC2022/w1.avi.
  55. http://home.itp.ac.ru/~ruban/27DEC2022/w1a.avi.
  56. http://home.itp.ac.ru/~ruban/27DEC2022/w2.avi.
  57. http://home.itp.ac.ru/~ruban/27DEC2022/w3.avi.
  58. A. S. Desyatnikov and Yu. S. Kivshar, Phys. Rev. Lett. 87, 033901 (2001).
  59. F. Bouchard, H. Larocque, A.M. Yao, C. Travis, I. De Leon, A. Rubano, E. Karimi, G.-L. Oppo, and R.W. Boyd, Phys. Rev. Lett. 117, 233903 (2016).

补充文件

附件文件
动作
1. JATS XML

版权所有 © Российская академия наук, 2023