Observation of the Strong Magneto-Optical Rotation of the Polarization of Light in Rubidium Vapor for Applications in Atomic Magnetometry

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Nonlinear resonances in alkali metal vapor, which are detected by the magneto-optical rotation of the linear polarization of light, are actively used in quantum magnetometry to fabricate atomic magnetometers. The magneto-optical rotation in most such sensors is due to magnetic birefringence, and rotation angles usually do not exceed tens of milliradians. In this work, an experiment where magneto-optical resonances of linear polarization rotation of a probe wave are due to strong dichroism induced in a medium by a counterpropagating pump wave has been proposed. Both waves are in resonance with the Fg = 2 → Fe = 1 optical transition in the 87Rb D1 line (λ ≈ 795 nm). Experiments have been carried out with a 2-cm-long cylindrical cell filled with a buffer gas, and the maximum rotation angle is ≈390 mrad (22°) at a width of resonance of about 300 nT. The results show that the configuration proposed for the observation of magneto-optical rotation is promising for the fabrication of compact high-sensitivity atomic magnetometers.

作者简介

A. Makarov

Institute of Laser Physics, Siberian Branch, Russian Academy of Sciences, 630090, Novosibirsk, Russia; Novosibirsk State Technical University, 630073, Novosibirsk, Russia

Email: x-kvant@mail.ru

D. Brazhnikov

Institute of Laser Physics, Siberian Branch, Russian Academy of Sciences, 630090, Novosibirsk, Russia; Novosibirsk State Technical University, 630073, Novosibirsk, Russia

Email: x-kvant@mail.ru

A. Goncharov

Institute of Laser Physics, Siberian Branch, Russian Academy of Sciences, 630090, Novosibirsk, Russia; Novosibirsk State University, 630090, Novosibirsk, Russia; Novosibirsk State Technical University, 630073, Novosibirsk, Russia

编辑信件的主要联系方式.
Email: x-kvant@mail.ru

参考

  1. H. Fujiwara, Spectroscopic Ellipsometry. Principles and Applications, John Wiley & Sons Ltd., Chichester (2003).
  2. E. B. Alexandrov, Phys. Scr. 2003, 27 (2003).
  3. Optical Magnetometry, ed. by D. Budker and D. F. Jackson Kimball, Cambridge University Press, N.Y. (2013).
  4. D. Budker, W. Gawlik, D. F. Kimball, S. M. Rochester, V. V. Yashchuk, and A. Weis, Rev. Mod. Phys. 74, 1153 (2002).
  5. M. Auzinsh, D. Budker, and S. M. Rochester, Optically Polarized Atoms, Oxford University Press Inc., N.Y. (2010).
  6. H. B. Dang, A. C. Maloof, and M. V. Romalis, Appl. Phys. Lett. 97, 151110 (2010).
  7. D. Budker, V. Yashchuk, and M. Zolotorev, Phys. Rev. Lett. 81, 5788 (1998).
  8. D. V. Brazhnikov, V. I. Vishnyakov, A. N. Goncharov, E. Alipieva, C. Andreeva, and E. Taskova, Phys. Rev. A 106, 013113 (2022).
  9. J. C. Allred, R. N. Lyman, T. W. Kornack, and M. V. Romalis, Phys. Rev. A 89, 130801 (2002).
  10. V. Shah and M. V. Romalis, Phys. Rev. A 80, 013416 (2009).
  11. M. V. Petrenko, A. S. Pazgalev, and A. K. Vershovskii, Phys. Rev. Appl. 15, 064072 (2021).
  12. V. M. Entin, I. I. Ryabtsev, A. E. Boguslavsky, and Yu. V. Brzhazovsky, Opt.Commun. 207, 201 (2002).
  13. C. J. Zhu, J. Guan, F. Zhou, E. Y. Zhu, and Y. Li, OSA Continuum 4, 2527 (2021).
  14. O. Alem, T. H. Sander, R. Mhaskar, J. LeBlanc, H. Eswaran, U. Steinho, Y. Okada, J. Kitching, L. Trahms, and S. Knappe, Phys. Med. Biol. 60, 4797 (2015).
  15. T. M. Tierney, N. Holmes, S. Mellor, J. D. L'opez, G. Roberts, R. M. Hill, E. Boto, J. Leggett, V. Shah, M. J. Brookes, R. Bowtell, and G. R. Barnes, NeuroImage 199, 598 (2019).
  16. V. Acosta, M. P. Ledbetter, S. M. Rochester, D. Budker, D. F. Jackson Kimball, D. C. Hovde, W. Gawlik, S. Pustelny, J. Zachorowski, and V. V. Yashchuk, Phys. Rev. A 73, 053404 (2006).
  17. S. Li, P. Vachaspati, D. Sheng, N. Dural, and M. V. Romalis, Phys. Rev. A 84, 061403(R) (2011).
  18. F. J. Duarte, Narrow-Linewidth Laser Oscillators and Intracavity Dispersion, in: Tunable Lasers Handbook, ed. by F. J. Duarte, Academic Press Inc., London (1995).
  19. M. D. Rotondaro and G. P. Perram, J. Quant. Spectrosc. Radiat. Transf. 57, 497 (1997).
  20. F. A. Franz, Phys. Rev. 139, A603 (1965).
  21. W. Happer, Rev. Mod. Phys. 44, 169 (1972).
  22. J. Vanier and C. Audoin, The Quantum Physics of Atomic Frequency Standards, Adam Hilger, Bristol and Philadelphia (1989).
  23. Д. В. Бражников, А. В. Тайченачев, А. М. Тумайкин, В. И. Юдин, И. И. Рябцев, В. М. Энтин, Письма в ЖЭТФ 91, 694 (2010)
  24. D. V. Brazhnikov, A. V. Taichenachev, A. M. Tumaikin, V. I. Yudin, I. I. Ryabtsev, and V. M. Entin, JETP Lett. 91, 625 (2010).
  25. D. V. Brazhnikov, A. V. Taichenachev, and V. I. Yudin, Eur. Phys. J. D 63, 315 (2011).
  26. G. Alzetta, S. Cartaleva, Y. Dancheva, Ch. Andreeva, S. Gozzini, L. Botti, and A. Rossi, J. Opt. B: Quantum Semiclass. Opt. 3, 181 (2001).
  27. Z. A. S. Jadoon, H. R. Noh, and J. T. Kim, Sci. Rep. 12, 145 (2022).
  28. D. V. Brazhnikov, A. V. Taichenachev, A. M. Tumaikin, and V. I. Yudin, Laser Phys. Lett. 11, 125702 (2014).
  29. D. V. Brazhnikov, S. M. Ignatovich, V. I. Vishnyakov, M. N. Skvortsov, Ch. Andreeva, V. M. Entin, and I. I. Ryabtsev, Laser Phys. Lett. 15, 025701 (2018).
  30. D. V. Brazhnikov, S. M. Ignatovich, A. S. Novokreshchenov, and M. N. Skvortsov, J. Phys. B: At. Mol. Opt. 52, 215002 (2019).
  31. Е. Б. Александров, А. К. Вершовский, УФН 179, 605 (2009)
  32. E. B. Aleksandrov and A. K. Vershovskii, Phys. Usp. 52, 573 (2009).

补充文件

附件文件
动作
1. JATS XML

版权所有 © Российская академия наук, 2023