Coulomb correlations and electronic structure of CuCo2S4: a DFT + DMFT study

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

By employing a combined method of density functional theory and dynamical mean-field theory (DFT + DMFT) we study the spectral properties and local moment formation in the normal state of a Co-based superconductor CuCo2S4. The obtained quasiparticle mass enhancement 
 is smaller than that in iron-based parent compounds indicating weak correlations in the Co 
 states. We show that the mass enhancement is accompanied by an insignificant renormalization and shift of the bands in the vicinity of the Fermi level. This subtle modification is sufficient to induce a substantial transformation of one of the Fermi surface sheets and occurs due to the presence of shallow Fermi surface pockets in the electronic structure of CuCo2S4. The calculated local and fluctuating moments are smaller than those in iron-based superconductors questioning the importance of spin fluctuations for understanding the pairing mechanism of CuCo2S4.

Sobre autores

S. Skornyakov

M. N. Miheev Institute of Metal Physics, Russian Academy of Sciences;Ural Federal University

Email: letters@kapitza.ras.ru

I. Trifonov

M. N. Miheev Institute of Metal Physics, Russian Academy of Sciences;Ural Federal University

Email: letters@kapitza.ras.ru

V. Anisimov

M. N. Miheev Institute of Metal Physics, Russian Academy of Sciences;Ural Federal University

Autor responsável pela correspondência
Email: letters@kapitza.ras.ru

Bibliografia

  1. K. Takada, H. Sakurai, E. Takayama-Muromachi, F. Izumi, R.A. Dilanian, and T. Sasaki, Nature 422, 53 (2003).
  2. H. Sakurai, Y. Ihara, and K. Takada, Physica C 514, 378 (2015).
  3. H. Mizoguchi, T. Kuroda, T. Kamiya, and H. Hosono, Phys. Rev. Lett. 106, 237001 (2011).
  4. B.K. Rai, I.W.H. Oswald, J.K. Wang, G.T. McCandless, J.Y. Chan, and E. Morosan, Chem. Mater. 27, 2488 (2015).
  5. Z. He, R. Huang, K. Zhou, Y. Liu, S. Guo, Y. Song, Z. Guo, S. Hu, L. He, Q. Huang, L. Li, J. Zhang, S. Wang, J. Guo, X. Xing, and J. Chen, Inorg. Chem. 60, 6157 (2021).
  6. J. L. Sarrao, L.A. Morales, J.D. Thompson, B. L. Scott, G.R. Stewart, F. Wastin, J. Rebizant, P. Boulet, E. Colineau, and G.H. Lander, Nature 420, 297 (2002).
  7. N. J. Curro, T. Caldwell, E.D. Bauer, L.A. Morales, M. J. Graf, Y. Bang, A.V. Balatsky, J.D. Thompson, and J. L. Sarrao, Nature 434, 622 (2005).
  8. K. Miyatani, T. Tanaka, S. Sakita, M. Ishikawa, and N. Shirakawa, Jpn. J. Appl. Phys. 32, Suppl. 32-3, 448 (1993).
  9. Y. Furukawa, S. Wada, K. Miyatani, T. Tanaka, M. Fukugauchi, and M. Ishikawa, Phys. Rev. B 51, 6159 (1995).
  10. Y.-Y. Jin, S.-H. Sun, Y.-W. Cui, Q.-Q. Zhu, L.-W. Ji, Z. Ren, and G.-H. Cao, Phys. Rev. Mater. 5, 074804 (2021).
  11. H. Sugita, S. Wada, K. Miyatani, T. Tanaka, and M. Ishikawa, Physica B 284, 473 (2000).
  12. S. Wada, H. Sugita, K. Miyatani, T. Tanaka, and T. Nishikawa, J. Phys.: Condens. Matter 14, 219 (2002).
  13. G. Baskaran, Phys. Rev. Lett. 91, 097003 (2003).
  14. T. Fujimoto, G.-Q. Zheng, Y. Kitaoka, R. L. Meng, J. Cmaidalka, and C.W. Chu, Phys. Rev. Lett. 92, 047004 (2004).
  15. Q.-H. Wang, D.-H. Lee, and P.A. Lee, Phys. Rev. B 69, 092504 (2004).
  16. J. Hirsch, M. Maple, and F. Marsiglio, Physica C 514, 1 (2015).
  17. Z. Yue, Z. Hou, F. Yun, P. Liu, G. Yang, A. Bake, W. Zhao, D. Cortie, C. Shu, S. Hu, J. Cheng, and X. Wang, J. Mater. Chem. C 9, 8874 (2021).
  18. L. Wu, L. Sun, X. Li, Q. Zhang, Y. Zhang, J. Gu, K. Wang, and Y. Zhang, Small 16, 2001468 (2020).
  19. K.Miyatani, T. Tanaka, and M. Ishikawa, J. Appl. Phys. 83, 6792 (1998).
  20. A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg, Rev. Mod. Phys. 68, 13 (1996).
  21. V. I. Anisimov, A. I. Poteryaev, M.A. Korotin, A.O. Anokhin, and G. Kotliar, J. Phys. Condens. Matter 9, 7359 (1997).
  22. Z.P. Yin, K. Haule, and G. Kotliar, Nat. Mater. 10, 932 (2011).
  23. I.A. Nekrasov, N. S. Pavlov, and M.V. Sadovskii, JETP Letters 102, 30 (2015).
  24. S. L. Skornyakov and I. Leonov, Phys. Rev. B 100, 235123 (2019).
  25. S. L. Skornyakov, V. I. Anisimov, and I. Leonov, Phys. Rev. B 103, 155115 (2021).

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Российская академия наук, 2023