Dimensionality-Driven Evolution of Electronic Structure and Transport Properties in Pressure-Induced Phases of Ca2N Electride

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We investigate how a change in dimensionality of interstitial electronic states in the Ca2N electride influences its electronic structure and transport properties. Employing the Maximally Localized Wannier Functions (MLWF) approach, we successfully describe the interstitial quasi-atomic states (ISQ) located in non-nuclear Wyckoff positions between Ca atoms. This allowed us to conclude that the electride subsystem is responsible for the formation of a band structure in the vicinity of the Fermi level in all Ca2N phases observed under pressure. Using the obtained MLWF basis, we calculate the electronic and thermal conductivity, along with the Seebeck coefficient, by solving the semi-classical Boltzmann transport equations. The results achieved permit the conclusion that the counterintuitive increase in resistance under pressure observed experimentally is attributed to enhanced localization of interstitial electronic states through electride subspace dimensionality transformations. We also established a substantial anisotropy in the transport properties within the 2D phase and found that the conductivity inside the plane of the electride layers is provided by electrons, while along the direction normal to the layers, holes become the majority carriers.

作者简介

M. Mazannikova

Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences;Skolkovo Institute of Science and Technology;Department of Theoretical Physics and Applied Mathematics, Ural Federal University

Email: mazannikova@imp.uran.ru
620108, Yekaterinburg, Russia;121205, Moscow, Russia;620002, Yekaterinburg, Russia

Dm. Korotin

Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences;Skolkovo Institute of Science and Technology

Email: mazannikova@imp.uran.ru
620108, Yekaterinburg, Russia;121205, Moscow, Russia

V. Anisimov

Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences;Skolkovo Institute of Science and Technology;Department of Theoretical Physics and Applied Mathematics, Ural Federal University

Email: mazannikova@imp.uran.ru
620108, Yekaterinburg, Russia;121205, Moscow, Russia;620002, Yekaterinburg, Russia

A. Oganov

Skolkovo Institute of Science and Technology

Email: mazannikova@imp.uran.ru
121205, Moscow, Russia

D. Novoselov

Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences;Skolkovo Institute of Science and Technology;Department of Theoretical Physics and Applied Mathematics, Ural Federal University

编辑信件的主要联系方式.
Email: mazannikova@imp.uran.ru
620108, Yekaterinburg, Russia;121205, Moscow, Russia;620002, Yekaterinburg, Russia

参考

  1. P. P. Edwards, Science 333, 49 (2011).
  2. Q. Zhu, T. Frolov, and K. Choudhary, Matter 1, 1293 (2019).
  3. D. Y. Novoselov, D. M. Korotin, A. O. Shorikov, A. R. Oganov, V. I. Anisimov, JETP Lett. 109, 387 (2019).
  4. D. Y. Novoselov, D. M. Korotin, A. O. Shorikov, A. R. Oganov, and V. I. Anisimov, J. Phys.: Condens. Matter 32, 445501 (2020).
  5. D. Y. Novoselov, D. M. Korotin, A. O. Shorikov, V. I. Anisimov, and A. R. Oganov, J. Phys. Chem. C 125, 15724 (2021).
  6. D. Y. Novoselov, V. I. Anisimov, and A. R. Oganov, Phys. Rev. B 103, 235126 (2021).
  7. H. Hosono and M. Kitano, Chem. Rev. 121, 3121 (2021).
  8. Z. Wan, W. Xu, T. Yang, and R. Zhang, Phys. Rev. B 106, L060506 (2022).
  9. S. Liu, C. Wang, H. Jeon, Y. Jia, and J. H. Cho, Phys. Rev. B 105, L220401 (2022).
  10. Z. Liu, Q. Zhuang, F. Tian, D. Duan, H. Song, Z. Zhang, and T. Cui, Phys. Rev. Lett. 127, 157002 (2021).
  11. A. Fujimori, Nat. Mater. 21, 1217 (2022).
  12. M. A. Mazannikova, D. M. Korotin, A. O. Shorikov, V. I. Anisimov, and D. Y. Novoselov, J. Phys. Chem. C 127, 8714 (2023).
  13. K. Lee, S. W. Kim, Y. Toda, S. Matsuishi, and H. Hosono, Nature 494, 336 (2013).
  14. X. Zhang and G. Yang, Phys. Chem. Lett. 11, 3841 (2020).
  15. J. Li, S. Inagi, T. Fuchigami, H. Hosono, and S. Ito, Electrochem.Commun. 44, 45 (2014).
  16. T. Kocabas, A. Ozden, I. Demiroglu, D. C¸ akır, and C. Sevik, J. Phys. Chem. Lett. 9, 4267 (2018).
  17. B. Sa, R. Xiong, C. Wen, Y. L. Li, P. Lin, Q. Lin, and Z. Sun, J. Phys. Chem. C 124, 7683 (2020).
  18. D. Liu and D. Tomanek, Nano Lett. 19, 1359 (2019).
  19. H. Tang, B. Wan, B. Gao, Muraba et al. (Collaboration), Adv. Sci. 5, 1800666 (2018).
  20. D. Y. Novoselov, M. A. Mazannikova, D. M. Korotin, A. O. Shorikov, M. A. Korotin, V. I. Anisimov, and A. R. Oganov, J. Phys. Chem. Lett. 13, 7155 (2022).
  21. I. Souza, N. Marzari, and D. Vanderbilt, Phys. Rev. B 65, 035109 (2001).
  22. G. Pizzi, D. Volja, B. Kozinsky, M. Fornari, and N. Marzari, Comput. Phys.Commun. 185, 422 (2014).
  23. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. B 77, 3865 (1996).
  24. P. Giannozzi, S. Baroni, N. Bonini et al. (Collaboration), Phys. Condens. Matter. 21, 395502 (2009).
  25. A. A. Mosto, J. R. Yates, G. Pizzi, Y.-S. Lee, I. Souza, D. Vanderbilt, and N. Marzari, Comput. Phys.Commun. 185, 2309 (2014).
  26. R. F. Bader, Chem. Rev. 91, 893 (1991).
  27. A. Otero-de-la-Roza, E. R. Johnson, and V. Luan˜a, Comp. Phys.Comm. 185, 1007 (2014).
  28. A. Savin, R. Nesper, S. Wengert, and T. F. F¨assler, Angew Chem.Int. Ed. Engl. 36, 1808 (1997).
  29. Y. Ma, M. Eremets, A. R. Oganov, Y. Xie, I. Trojan, S. Medvedev, and V. Prakapenka, Nature 458, 182 (2009).
  30. T. Matsuoka and K. Shimizu, Nature 458, 186 (2009).
  31. T. Yabuuchi, Y. Nakamoto, K. Shimizu, and T. Kikegawa, J. Phys. Soc. Jpn. 74, 2391 (2005).
  32. N. W. Ashcroft, Nature 458, 158 (2009).
  33. S. Kasap, Thermoelectric e ects in metals: thermocouples, Department of Electrical Engineering University of Saskatchewan, Canada (2001).
  34. D. M. Rowe, CRC handbook of thermoelectrics: macro to nano, RC, Boca Raton, FL. (2006).

补充文件

附件文件
动作
1. JATS XML

版权所有 © Российская академия наук, 2023