O nelineynykh dvukh- i trekhkomponentnykh uravneniyakh Kleyna–Gordona, dopuskayushchikh lokalizovannye resheniya s effektom bieniy svyazannykh ostsillyatorov

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

В данной работе представлены уравнения для двух и трех скалярных полей, допускающие локализованые решения, которые проявляют эффект биений связанных осцилляторов. Периодически амплитуда колебаний локализованного возмущения для одного поля постепенно уменьшается до минимума, а остальных скалярных полей – увеличивается до максимума, затем процесс повторяется в обратном направлении. При этом, первоначально другие поля, кроме одного, находятся либо в состоянии фонового решения с малой амплитудой, либо равны нулю. Подобные решения могут быть интересны с точки зрения аналогии с осцилляциями нейтрино. Представлены так же уравнения движения, в которых при возмущении одной из компонент обязательно появляется возмущение второй и третьей даже при нулевом фоновом состоянии. Показано, что для этих уравнений выполняется закон сохранения энергии.

作者简介

R. Salimov

Уфимский университет науки и технологий

Email: salimovrkr@yandex.ru
Уфа, Россия

T. Salimov

Московский физико-технический институт

Долгопрудный, Россия

E. Ekomasov

Уфимский университет науки и технологий

Уфа, Россия

参考

  1. H. Yamanoto, Progress of Theoretical Physics 58(3), 1014 (1977)
  2. A.M. Kosevich, Physica D 41, 253 (1990).
  3. Yu. P. Rybakov and B. Saha, Phys. Lett. A 122, 5 (1996).
  4. N. S. Manton, Nonlinearity 21(11), T221 (2008).
  5. A. Maccari, EJTP 3(10), 39 (2006).
  6. В. Г. Маханьков, Физика элементарных частиц и атомного ядра 14, 123 (1983).
  7. В. Г. Маханьков, Ю. В. Рыбаков, В. И. Санюк, УФН 162(2), 1 (1992).
  8. C. Adam, C. Naya, J. Sanchez-Guillen, and A. Wereszczynski, Phys. Rev. Lett. 111, 232501 (2013).
  9. C. Naya and P. Sutcliffe, Phys. Rev. Lett. 121(23), 232002 (2018).
  10. Р. К. Салимов, Т. Р. Салимов, Е. Г. Екомасов, Письма в ЖЭТФ 112(6), 357 (2020).
  11. В. С. Герджиков, Н. А. Костов, Т. И. Валчев, ТМФ 159(3), 438 (2009).
  12. A. S. Desyatnikov, D. E. Pelinovsky, and J. Yang, Fundamentalnaya i prikladnaya matematika 12(7), 35 (2006).
  13. Р. Додд, Дж. Эйлбек, Дж. Гиббон, Солитоны и нелинейные волновые уравнения, Мир, М. (1988).
  14. С. С. Герштейн, Е. П. Кузнецов, В. А. Рябов, УФН 167(8), 811 (1997).
  15. С. М. Биленький, УФН 173(11), 1171 (2003).
  16. И. С. Цукерман, УФН 175(8), 863 (2005).
  17. А. Е. Лобанов, А. Е. Чухнова, ЖЭТФ 162(3), 364 (2022).

补充文件

附件文件
动作
1. JATS XML

版权所有 © Российская академия наук, 2024