Effective Hamiltonian of Topologically Protected Qubit in a Helical Crystal

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We study a superlattice formed by tunnel-coupled identical antidots periodically situated in a two-dimensional topological insulator placed in a magnetic field. The superlattice spectrum can be controlled by gate electrodes or by changing the magnetic flux through the antidots. We demonstrate that a topologically protected qubit appears at the boundary between two regions with different fluxes. The qubit properties depend on the value of the flux jump on the boundary and can be controlled by the gate voltage. We derive the effective Hamiltonian of such a qubit and analyze the dependence of its properties on the main parameters of the superlattice: the tunnel coupling between antidots, and the probability of jumps with the spin flip.

作者简介

R. Niyazov

Petersburg Nuclear Physics Institute, National Research Center Kurchatov Institute;Ioffe Institute

Email: r.niyazov@mail.ioffe.ru
188300, Gatchina, Russia;194021, St. Petersburg, Russia

D. Aristov

Petersburg Nuclear Physics Institute, National Research Center Kurchatov Institute;Faculty of Physics, St. Petersburg State University

Email: r.niyazov@mail.ioffe.ru
188300, Gatchina, Russia;199034, St. Petersburg, Russia

V. Kachorovskiy

Ioffe Institute

编辑信件的主要联系方式.
Email: r.niyazov@mail.ioffe.ru
194021, St. Petersburg, Russia

参考

  1. B. Bernevig and T. Hughes, Topological Insulators and Topological Superconductors, Princeton University Press, Princeton (2013).
  2. M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).
  3. X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011).
  4. C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 226801 (2005).
  5. B. A. Bernevig, T. L. Hughes, and S. C. Zhang, Science 314, 1757 (2006).
  6. M. Konig, S. Wiedmann, C. Brune, A. Roth, H. Buhmann, L. W. Molenkamp, X.-L. Qi, and S.- C. Zhang, Science 318, 766 (2007).
  7. A. Roth, C. Brune, H. Buhmann, L. W. Molenkamp, J. Maciejko, X.-L. Qi, and S.-C. Zhang, Science 325, 294 (2009).
  8. G. M. Gusev, Z. D. Kvon, O. A. Shegai, N. N. Mikhailov, S. A. Dvoretsky, and J. C. Portal, Phys. Rev. B 84, 121302 (2011).
  9. C. Brune, A. Roth, H. Buhmann, E. M. Hankiewicz, L. W. Molenkamp, J. Maciejko, X.-L. Qi, and S.- C. Zhang, Nat. Phys. 8, 485 (2012).
  10. A. Kononov, S. V. Egorov, Z. D. Kvon, N. N. Mikhailov, S. A. Dvoretsky, and E. V. Deviatov, JETP Lett. 101, 814 (2015).
  11. H. Peng, K. Lai, D. Kong, S. Meister, Y. Chen, X. L. Qi, S. C. Zhang, Z. X. Shen, and Y. Cui, Nat. Mater. 9, 225 (2010).
  12. B. C. Lin, S. Wang, L. X. Wang, C. Z. Li, J. G. Li, D. Yu, and Z. M. Liao, Phys. Rev. B 95, 235436 (2017).
  13. J. H. Bardarson, P. W. Brouwer, and J. E. Moore, Phys. Rev. Lett. 105, 156803 (2010).
  14. J. H. Bardarson and J. E. Moore, Rep. Prog. Phys. 76, 56501 (2013).
  15. G. Gusev, Z. Kvon, O. Shegai, N. Mikhailov, and S. Dvoretsky, Solid State Commun. 205, 4 (2015).
  16. P. Delplace, J. Li, and M. Buttiker, Phys. Rev. Lett. 109, 246803 (2012).
  17. F. Dolcini, Phys. Rev. B 83, 165304 (2011).
  18. R. A. Niyazov, D. N. Aristov, and V. Y. Kachorovskii, Phys. Rev. B 98, 045418 (2018).
  19. R. A. Niyazov, D. N. Aristov, and V. Y. Kachorovskii, npj Computational Materials 6, 174 (2020).
  20. R. A. Niyazov, D. N. Aristov, and V. Y. Kachorovskii, Phys. Rev. B 103, 125428 (2021).
  21. R. A. Niyazov, D. N. Aristov, and V. Y. Kachorovskii, JETP Lett. 113, 689 (2021).
  22. H. Maier, J. Ziegler, R. Fischer, D. Kozlov, Z. D. Kvon, N. Mikhailov, S. A. Dvoretsky, and D. Weiss, Nat.Commun. 8, 2023 (2017).
  23. J. Ziegler, Quantum transport in HgTe topological insulator nanostructures, Ph. D. thesis, University of Regensburg, Regensburg (2019).
  24. R. A. Niyazov, D. N. Aristov, and V. Y. Kachorovskii, (2023), Phys. Rev. B 108, 075424 (2023).
  25. B. A. Volkov and O. A. Pankratov, JETP Lett. 42, 178 (1985).
  26. J. C. Y. Teo and C. L. Kane, Phys. Rev. B 79, 235321 (2009).
  27. D. N. Aristov and R. A. Niyazov, Phys. Rev. B 94, 035429 (2016).
  28. D. N. Aristov, I. V. Gornyi, D. G. Polyakov, and P. Wolfle, Phys. Rev. B 95, 155447 (2017).
  29. J. Wang, Y. Meir, and Y. Gefen, Phys. Rev. Lett. 118, 046801 (2017).
  30. S. V. Maleyev, A. G. Yashenkin, and D. N. Aristov, Phys. Rev. B 50, 13825 (1994).
  31. V. I. Perel and D. G. Polyakov, JETP 59, 204 (1984).
  32. A. P. Dmitriev, JETP 68, 132 (1989).

补充文件

附件文件
动作
1. JATS XML

版权所有 © Российская академия наук, 2023