Formation of a High-Energy Particle Beam by Means of Focusing Crystal Devices

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

It becomes difficult and expensive to control TeV-particle trajectories using electromagnets to obtain extracted beams at accelerators. For these purposes, high-gradient devices based on bent crystals are more suitable. These crystals can serve as superstrong lenses with a focal length of less than 1 m with an equivalent magnetic field of 1000 T. In this work, a scheme based on two successive focusing crystals has been implemented to form a 50 GeV axially symmetric beam with a small divergence of 30 μrad in both the horizontal and vertical planes. One of the promising applications of this scheme is the creation of high-energy neutrino beams.

Sobre autores

G. Britvich

Institute for High Energy Physics, National Research Center Kurchatov Institute, 142281, Protvino, Moscow region, Russia

Email: chesnokov@ihep.ru

M. Kostin

Institute for High Energy Physics, National Research Center Kurchatov Institute, 142281, Protvino, Moscow region, Russia

Email: chesnokov@ihep.ru

V. Pitalev

Institute for High Energy Physics, National Research Center Kurchatov Institute, 142281, Protvino, Moscow region, Russia

Email: chesnokov@ihep.ru

I. Poluektov

Institute for High Energy Physics, National Research Center Kurchatov Institute, 142281, Protvino, Moscow region, Russia

Email: chesnokov@ihep.ru

Yu. Sandomirskiy

Institute for High Energy Physics, National Research Center Kurchatov Institute, 142281, Protvino, Moscow region, Russia

Email: chesnokov@ihep.ru

M. Chesnokov

Institute for High Energy Physics, National Research Center Kurchatov Institute, 142281, Protvino, Moscow region, Russia

Email: chesnokov@ihep.ru

Yu. Chesnokov

Institute for High Energy Physics, National Research Center Kurchatov Institute, 142281, Protvino, Moscow region, Russia

Email: chesnokov@ihep.ru

A. Yanovich

Institute for High Energy Physics, National Research Center Kurchatov Institute, 142281, Protvino, Moscow region, Russia

Autor responsável pela correspondência
Email: chesnokov@ihep.ru

Bibliografia

  1. V. M. Biryukov, Yu. A. Chesnokov, and V. I. Kotov, Crystal channeling and its application at high-energy accelerators, Springer, Berlin, Germany (1997), 219 p.
  2. E. N. Tsyganov, Estimates of cooling and bending processes for charged particle penetration through a mono crystal, preprint TM-682, TM-684, Fermilab, Batavia (1976).
  3. A. F. Elishev, N. A. Filatova, V. M. Golovatyuk et al. (Collaboration), Phys. Lett. B 88, 387 (1979).
  4. A. F. Elishev, N. A. Filatova, V. M. Golovatyuk et al. (Collaboration), JETP Lett. 30, 442 (1979).
  5. A. G. Afonin, V. T. Baranov, V. M. Biryukov et al. (Collaboration), Phys. Rev. Lett. 87, 094802 (2001).
  6. R. P. Fliller, A. Drees, D. Gassner, L. Hammons, G. McIntyre, S. Peggs, D. Trbojevic, V. Biryukov, Y. Chesnokov, and V. Terekhov, Nucl. Instrum. Methods B 234, 47 (2005).
  7. N. V. Mokhov, G. E. Annala, A. Apyan et al. (Collaboration), Int. J. Mod. Phys. A 25, 98 (2010).
  8. W. Scandale, G. Arduini, M. Butcher et al. (Collaboration), Phys. Lett. B 758, 129 (2016).
  9. W. Scandale, G. Arduini, R. Assmann et al. (Collaboration), Int. J. Mod. Phys. A 37, 2230004 (2022).
  10. M. A. Gordeeva, M. P. Gur'ev, A. S. Denisov et al. (Collaboration), JETP Lett. 54, 487 (1991).
  11. V. I. Baranov, V. M. Biryukov, A. P. Bugarsky, Yu. A. Chesnokov, V. I. Kotov, M. V. Tarakanov, V. I. Terekhov, S. V. Tsarik, O. L. Fedin, M. A. Gordeeva, M. P. Gur'ev, Yu. P. Platonov, and A. I. Smirnov, Nucl. Instrum. Methods B 95, 449 (1995).
  12. A. G. Afonin, V. I. Baranov, V. T. Baranov et al. (Collaboration), JETP Lett. 96, 424 (2012).
  13. W. Scandale, G. Arduini, M. Butcher et al. (Collaboration), Phys. Lett. B 733, 366 (2014).
  14. A. G. Afonin, A. G. Vasilyeva, A. A. Durum, M. Yu. Kostin, V. A. Maisheev, Yu. E. Sandomirsky, V. I. Pitalev, I. V. Poluektov, M. Yu. Chesnokov, Yu. A. Chesnokov, and A. A. Yanovich, Physics of Particles and Nuclei Letters 19(4), 389 (2022).
  15. A. G. Afonin, G. I. Britvich, A. P. Bugorskii, M. K. Bulgakov, A. A. Durum, M. Yu. Kostin, A. V. Lutchev, V. A. Maisheev, Yu. E. Sandomirskiy, V. I. Pitalev, I. V. Poluektov, Yu. A. Chesnokov, P. N. Chirkov, and A. A. Yanovich, JETP Lett. 104, 12 (2016).
  16. W. Scandale, G. Arduini, F. Cerutti et al. (Collaboration), Nucl. Instrum. Meth. B 446, 15 (2019).
  17. W. Scandale, G. Arduini, F. Cerutti et al. (Collaboration), Nucl. Instrum. Methods A 1015, 165747 (2021).
  18. W. Scandale, L. S. Esposito, M. Garattini et al. (Collaboration), The European Physical Journal C 79(12), 993 (2019).
  19. W. Scandale, G. Arduini, F. Cerutti et al. (Collaboration), Phys. Lett. B 804(10), 135396 (2020).
  20. W. Scandale, G. Arduini, F. Cerutti et al. (Collaboration), The European Physical Journal Plus 137(7), 811 (2022).
  21. W. Scandale, G. Arduini, F. Cerutti et al. (Collaboration), Nucl. Instrum. Methods B 438, 38 (2019).
  22. В. П. Карташев, В. И. Котов, Методы формирования пучков частиц на ускорителях высоких энергий, Энергоатомиздат, М. (1989).
  23. Y. A. Chesnokov and V. A. Maisheev, Nucl. Phys. A 1003, 122012 (2020).

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Российская академия наук, 2023