UNIQUENESS OF THE ENTROPY SOLUTION TO THE DIRICHLET PROBLEM FOR AN ELLIPTIC EQUATION WITH A MEASURE-VALUED POTENTIAL IN A HYPERBOLIC SPACE
- Authors: Vildanova V.F1
-
Affiliations:
- Institute of Mathematics with Computing Centre of Ufa Scientific Center of RAS
- Issue: Vol 60, No 12 (2024)
- Pages: 1653-1663
- Section: PARTIAL DERIVATIVE EQUATIONS
- URL: https://kld-journal.fedlab.ru/0374-0641/article/view/649582
- DOI: https://doi.org/10.31857/S0374064124120062
- EDN: https://elibrary.ru/IPFFXJ
- ID: 649582
Cite item
Abstract
We consider the Dirichlet problem in the hyperbolic space for a nonlinear equation of the second order with measure-valued potential. The assumptions on the structure of the equation are stated in terms of a generalized
Keywords
About the authors
V. F Vildanova
Institute of Mathematics with Computing Centre of Ufa Scientific Center of RAS
Email: gilvenera@mail.ru
Russia
References
- Вильданова, В.Ф. Энтропийное решение для уравнения с мерозначным потенциалом в гиперболическом пространстве / В.Ф. Вильданова, Ф.Х. Мукминов // Мат. сб. — 2023. — Т. 214, № 11. — С. 37–62.
- Vil’danova, V.F. and Mukminov, F.Kh., Entropy solution for an equation with measure-valued potential in a hyperbolic space, Sb. Math., 2023, vol. 214, no. 11, pp. 1534–1559.
- An
- Кожевникова, Л.М. Эквивалентность энтропийных и ренормализованных решений нелинейной эллиптической задачи в пространствах Музилака–Орлича / Л.М. Кожевникова, А.П. Кашникова // Дифференц. уравнения. — 2023. — Т. 59, № 1. — С. 35–51.
- Kozhevnikova, L.M. and Kashnikova, A.P., Equivalence of entropy and renormalized solutions of a nonlinear elliptic problem in Musielak–Orlicz spaces, Differ. Equat., 2023, vol. 59, no. 1, pp. 34–50.
- Saintier, N. Nonlinear elliptic equations with measure valued absorption potential / N. Saintier, L. V’eron // Ann. Scuola Norm. Sup. Pisa Cl. Sci. — 2021. — V. 22, № 1. — P. 351–397.
- Malusa, A. Renormalized solutions to elliptic equations with measure data in unbounded domains / A. Malusa, M.M. Porzio // Nonlin. Anal. — 2007. — V. 67, № 8. — P. 2370–2389.
- Кашникова, А.П. Существование решений нелинейных эллиптических уравнений с данными в виде меры в пространствах Музилака–Орлича / А.П. Кашникова, Л.М. Кожевникова // Мат. сб. — 2022. — Т. 213, № 4. — С. 38–73.
- Kashnikova, A.P. and Kozhevnikova L.M., Existence of solutions of nonlinear elliptic equations with measure data in Musielak–Orlicz spaces, Sb. Math., 2022, vol. 213, no. 4, pp. 476–511.
- Vildanova, V.F. Perturbations of nonlinear elliptic operators by potentials in the space of multiplicators / V.F. Vildanova, F.Kh. Mukminov // J. Math. Sci. — 2021. — V. 257, № 5. — P. 569–578.
- Chlebicka, I. Measure data elliptic problems with generalized Orlicz growth / I. Chlebicka // Proc. Roy. Soc. Edinburgh. Sect. A. — 2023. — V. 153, № 2. — P. 588–618.
- Chlebicka, I. Essentially fully anisotropic Orlicz functions and uniqueness to measure data problem / I. Chlebicka, P. Nayar // Math. Methods Appl. Sci. — 2022. — V. 45, № 14. — P. 8503–8527.
- Musielak, J. Orlicz Spaces and Modular Spaces / J. Musielak. — Berlin : Springer-Verlag, 1983. — 222 p.
- Harjulehto, P. Orlicz Spaces and Generalized Orlicz Spaces / P. Harjulehto, P. H‥ast‥o. — Cham : Springer, 2019. — 167 p.
- Aubin, T. Nonlinear Analysis on Manifolds. Monge–Amp`ere Equations / T. Aubin. — New York : Springer-Verlag, 1982. — 204 p.
- Renormalized solutions of nonlinear elliptic problems in generalized Orlicz spaces / P. Gwiazda, P. Wittbold, A. Wroblewska, A. Zimmermann // J. Differ. Equat. — 2012. — V. 253, № 2. — P. 635–666.
- Колмогоров, А.Н. Элементы теории функций и функционального анализа / А.Н. Колмогоров, С.В. Фомин. — М. : Наука, 1976. — 543 с.
- Kolmogorov, A.N. and Fomin, S.V., Elements of the Theory of Functions and Functional Analysis, Metric and Normed Spaces, Graylock Press, 1957.
Supplementary files
