ON ESTIMATIONS IN AN EQUATION WITH A PARAMETER AND A DISCONTINUOUS OPERATOR
- Authors: Potapov D.K1
-
Affiliations:
- Saint Petersburg State University
- Issue: Vol 60, No 10 (2024)
- Pages: 1435-1440
- Section: BRIEF MESSAGES
- URL: https://kld-journal.fedlab.ru/0374-0641/article/view/649608
- DOI: https://doi.org/10.31857/S0374064124100129
- EDN: https://elibrary.ru/JSNTUL
- ID: 649608
Cite item
Abstract
In a real reflexive Banach space, an equation with a parameter and a discontinuous nonlinear operator is considered. Both parameter estimations and operator norms are found for the equation. These estimations validate and define concretely the similar estimations obtained earlier in problems with a parameter for elliptic and ordinary differential equations with discontinuous right-hand sides.
Keywords
References
- Rakotoson, J.M. Generalized eigenvalue problems for totally discontinuous operators / J.M. Rakotoson // Disc. Contin. Dyn. Syst. — 2010. — V. 28, № 1. — P. 343-373.
- Chrayteh, H. Eigenvalue problems with fully discontinuous operators and critical exponents / H. Chrayteh, J.M. Rakotoson // Nonlin. Anal. — 2010. — V. 73, № 7. — P. 2036-2055.
- Chrayteh, H. Qualitative properties of eigenvectors related to multivalued operators and some existence results / H. Chrayteh // J. Optim. Theory Appl. — 2012. — V. 155, № 2. — P. 507-533.
- Pavlenko, V.N. and Potapov, D.K., Existence of a ray of eigenvalues for equations with discontinuous operators, Siberian Math. J., 2001, vol. 42, no. 4, pp. 766–773.
- Potapov, D.K., On an existence of a ray of eigenvalues for equations of elliptic type with discontinuous nonlinearities in a critical case, Vestn. Saint-Petersburg Univ. Ser. 10. Prikl. Mat. Inf. Protsessy Upr., 2004, no. 4, pp. 125–132.
- Potapov, D.K., On a number of solutions in problems with spectral parameter for equations with discontinuous operators, Ufa Math. J., 2013, vol. 5, no. 2, pp. 56–62.
- Potapov, D.K., Estimation of the bifurcation parameter in spectral problems for equations with discontinuous operators, Ufa Math. J., 2011, vol. 3, no. 1, pp. 42–44.
- Potapov, D.K., Estimation of operator norms in eigenvalue problems for equations with discontinuous operators, Izv. Saratovskogo Univ. Novaya ser. Ser. Mat. Mekh. Inf., 2011, vol. 11, no. 4, pp. 41–45.
- Potapov, D.K., On elliptic equations with spectral parameter and discontinuous nonlinearity, J. Sib. Fed. Univ. Math. & Phys., 2012, vol. 5, no. 3, pp. 417–421.
- Bonanno, G. Some remarks on a three critical points theorem / G. Bonanno // Nonlin. Anal. — 2003. — V. 54, № 4. — P. 651-665.
- Bonanno, G. Non-differentiable functionals and applications to elliptic problems with discontinuous nonlinearities / G. Bonanno, P. Candito // J. Differ. Equat. — 2008. — V. 244, № 12. — P. 3031-3059.
- Potapov, D.K., On an upper bound for the value of the bifurcation parameter in eigenvalue problems for elliptic equations with discontinuous nonlinearities, Differ. Equat., 2008, vol. 44, no. 5, pp. 737–739.
- Potapov, D.K., On the eigenvalue set structure for higher-order equations of elliptic type with discontinuous nonlinearities, Differ. Equat., 2010, vol. 46, no. 1, pp. 155–157.
- Potapov, D.K., Estimations of a differential operator in spectral parameter problems for elliptic equations with discontinuous nonlinearities, Vestn. Samarskogo Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2010, no. 5 (21), pp. 268–271.
- Potapov, D.K., Existence of solutions, estimates for the differential operator, and a “separating” set in a boundary value problem for a second-order differential equation with a discontinuous nonlinearity, Differ. Equat., 2015, vol. 51, no. 7, pp. 967–972.
Supplementary files
