ELECTROCATALYTIC SYNTHESIS OF p-AMINOPHENOL USING Fe-Ag-COMPOSITES
- 作者: Ivanova N.M.1, Vissurkhanova Y.A.1, Soboleva E.A.1, Muldakhmetov Z.M.1
-
隶属关系:
- LLP “Institute of Organic Synthesis and Coal Chemistry of the Republic of Kazakhstan”
- 期: 卷 59, 编号 10 (2023)
- 页面: 632-642
- 栏目: Articles
- URL: https://kld-journal.fedlab.ru/0424-8570/article/view/670903
- DOI: https://doi.org/10.31857/S0424857023100067
- EDN: https://elibrary.ru/WJJCKG
- ID: 670903
如何引用文章
详细
p-Aminophenol was prepared by electrocatalytic hydrogenation of p-nitrophenol using Ag + Fe + Fe3O4 (or Fe2O3) composites as catalysts formed during heat treatment and electrochemical reduction of silver ferrite, AgFeO2. AgFeO2 samples were synthesized by co-precipitation method without and in the presence of a polymer (polyvinyl alcohol, polyvinylpyrrolidone). The effect of the polymers on the phase constitutions of metal composites formed at the stage of synthesis, during the heat treatment and electrochemical reduction was established. The high electrocatalytic activity of prepared Fe-Ag-containing composites in electrohydrogenation of p-nitrophenol with an increase of hydrogenation rate by 2.2-2.7 times in comparison with its electrochemical reduction in similar conditions was shown.
作者简介
N. Ivanova
LLP “Institute of Organic Synthesis and Coal Chemistry of the Republic of Kazakhstan”
Email: yakhavisurkhanova@bk.ru
Karaganda, Kazakhstan
Ya. Vissurkhanova
LLP “Institute of Organic Synthesis and Coal Chemistry of the Republic of Kazakhstan”
Email: yakhavisurkhanova@bk.ru
Karaganda, Kazakhstan
E. Soboleva
LLP “Institute of Organic Synthesis and Coal Chemistry of the Republic of Kazakhstan”
Email: yakhavisurkhanova@bk.ru
Karaganda, Kazakhstan
Z. Muldakhmetov
LLP “Institute of Organic Synthesis and Coal Chemistry of the Republic of Kazakhstan”
编辑信件的主要联系方式.
Email: yakhavisurkhanova@bk.ru
Karaganda, Kazakhstan
参考
- Sahiner, N., Ozay, H., Ozay, O., and Aktas, N., A soft hydrogel reactor for cobalt nanoparticles preparation and use in the reduction of nitrophenols, Appl. Catal. B., 2010, vol. 101, no. 1, p. 137. https://doi.org/10.1016/j.apcatb.2010.09.022
- Zhao, P., Feng, X., Huang, D., Yang, D., and Astruc, D., Basic concepts and recent advances in nitrophenol reduction by gold- and other transition metal nanoparticles, Coord. Chem. Rev., 2015, vol. 287, p. 114. https://doi.org/10.1016/j.ccr.2015.01.002
- Zhang, W., Tan, F., Wang, W., Qiu, X., Qiao, X., and Chen, J., Facile, template-free synthesis of silver nanodendrites with high catalytic activity for the reduction of p-nitrophenol, J. Hazard Mater., 2012, vols. 217–218, p. 36. https://doi.org/10.1016/j.jhazmat.2012.01.056
- Negrete-Vergara, C., Alvarez-Alcalde, D., Moya, S.A., Paredes-Garcia, V., Fuentes, S., and Venegas-Yazigi, D., Selective hydrogenation of aromatic nitro compounds using unsupported nickel catalysts, ChemistrySelect, 2022, vol. 7, no. 20, Article number: e202200220. https://doi.org/10.1002/slct.202200220
- Vaidya, M.J., Kulkarni, S.M., and Chaudhari, R.V., Synthesis of p-aminophenol by catalytic hydrogenation of p-nitrophenol, Org. Process. Res. Dev., 2003, vol. 7, no. 2, p. 202. https://doi.org/10.1021/op025589w
- Li, Y., Cao, Y., and Jia, D., Enhanced catalytic hydrogenation activity of Ni/reduced graphene oxide nanocomposite prepared by a solid-state method, J. Nanopart. Res., 2018, vol. 20, Article number: 8. https://doi.org/10.1007/s11051-017-4069-2
- Ding, J., Chen, L., Shao, R., Wu, J., and Dong, W., Catalytic hydrogenation of p-nitrophenol to produce p‑aminophenol over a nickel catalyst supported on active carbon, Reaction Kinetics, Mechanisms and Catalysis, 2012, vol. 106, no. 1, p. 225. https://doi.org/10.1007/s11144-011-0417-x
- Gupta, V.K., Atar, N., Yola, M.L., Ustundag, Z., and Uzun, L., A novel magnetic Fe@Au core–shell nanoparticles anchored graphene oxide recyclable nanocatalyst for the reduction of nitrophenol compounds, Water Res., 2014, vol. 48, no. 1, p. 210. https://doi.org/10.1016/j.watres.2013.09.027
- Kim, J.D., Choi, M.Y., and Choi, H.C., Catalyst activity of carbon nanotube supported Pd catalysts for the hydrogenation of nitroarenes, Mater. Chem. Phys., 2016, vol. 173, p. 404. https://doi.org/10.1016/j.matchemphys.2016.02.030
- Morales, M.V., Conesa, J.M., Rodrigues-Ramos, I., Rocha, M., Freire, C., and Guerrero-Ruiz, A., CuPd bimetallic nanoparticles supported on magnesium oxide as an active and stable catalyst for the reduction of 4-nitrophenol to 4-aminophenol, Intern. J. Green Technology, 2017, vol. 3, p. 51. https://doi.org/10.30634/2414-2077.2017.03.5
- Kӓstner, C. and Thünemann, A.F., Catalytic reduction of 4-nitrophenol using silver nanoparticles with adjustable activity, Langmuir, 2016, vol. 32, no. 29, p. 7383. https://doi.org/10.1021/acs.langmuir.6b01477
- Xiao, C., Chen, S., Zhang, L., Zhou, S., and Wu, W., One-pot synthesis of responsive catalytic Au@PVP hybrid nanogels, Chem. Comm., 2012, vol. 48, p. 11751. https://doi.org/10.1039/c2cc36002k
- Nemanashi, M. and Meijboom, R., Synthesis and characterization of Cu, Ag and Au dendrimer-encapsulated nanoparticles and their application in the reduction of 4-nitrophenol to 4-aminophenol, J. Colloid Interface Sci., 2013, vol. 389, no. 1, p. 260. https://doi.org/10.1016/j.jcis.2012.09.012
- Din, M.I., Khalid, R., Hussain, Z., Hussain, T., Mujahid, A., Najeeb, J., and Izhar, F., Nanocatalytic assemblies for catalytic reduction of nitrophenols: A critical review, Crit. Rev. Anal. Chem., 2020, vol. 50, no. 4, p. 322. https://doi.org/10.1080/10408347.2019.1637241
- Hammerich, O., Reduction of nitro compounds and related substrates, In: Organic Electrochemistry, 5th ed., Eds.: Hammerich O., Speiser B., Boca Raton: CRC Press (Taylor & Francis Group), 2015, p. 1149–1200. https://doi.org/10.1201/b19122-36
- Wirtanen, T., Rodrigo, E., and Waldvogel, S.R., Recent advances in the electrochemical reduction of substrates involving N–O bonds, Adv. Synth. Catal., 2020, vol. 362, p. 2088. https://doi.org/10.1002/adsc.202000349
- Serra, A., Artal, R., Pozo, M., Garcia-Amoros, J., and Gomez, E., Simple environmentally-friendly reduction of 4-nitrophenol, Catalysts, 2020, vol. 10, Article number: 458 (12 pp.). https://doi.org/10.3390/catal10040458
- Song, J., Huang, Z.-F., Pan, L., Li, K., Zhang, X., Wang, L., and Zou, J.-J., Review on selective hydrogenation of nitroarene by catalytic, photocatalytic and electrocatalytic reactions, Appl. Catal. B, 2018, vol. 227, p. 386. https://doi.org/10.1016/j.apcatb.2018.01.052
- Иванова, Н.М., Соболева, Е.А., Кулакова, Е.В., Малышев, В.П., Кирилюс, И.В. Восстановление нитрофенолов в электрокаталитической системе. Журн. прикл. химии. 2009. Т. 82. № 3. С. 428. [Ivanova, N.M., Soboleva, E.A., Kulakova, E.V., Malyshev, V.P., and Kirilyus, I.V., Reduction of nitrophenols in an electrocatalytic system, Russ. J. Appl. Chem., 2009, vol. 82, p. 421.] https://doi.org/10.1134/s1070427209030148
- Sridharan, K., Endo, T., Cho, S.-G., Kim, J., Park, T.J., and Philip, R., Single step synthesis and optical limiting properties of Ni-Ag and Fe-Ag bimetallic nanoparticles, Opt. Mater., 2013, vol. 35, p. 860. https://doi.org/10.1016/j.optmat.2012.10.053
- Gayen, R.N. and Laha, P., Single-step synthesis and optical properties of bimetallic Fe-Ag nanoparticles, J. Nanosci. Nanotech., 2017, vol. 17, p. 666. https://doi.org/10.1166/jnn.2017.12389
- Nabiyouni, G. and Ghanbari, D., Fe–Ag nanocomposite: Hydrothermal preparation of Iron nanoparticles and silver dendrite like nanostructures, J. Nanostruct., 2017, vol. 7, no. 2, p. 111. https://doi.org/10.22052/JNS.2017.02.004
- Sharma, G. and Jeevanandam, P., A facile synthesis of multifunctional Iron oxide@Ag core-shell nanoparticles and their catalytic applications, Eur. J. Inorg. Chem., 2013, no. 36, p. 6126. https://doi.org/10.1002/ejic.201301193
- Иванова, Н.М., Соболева, Е.А., Висурханова, Я.А., Мулдахметов, З. Электрохимическое получение Fe–Cu-композитов на основе феррита меди(II) и их электрокаталитические свойства. Электрохимия. 2020. Т. 56. С. 579. [Ivanova, N.M., Soboleva, E.A., Visurkhanova, Ya.A., and Muldakhmetov, Z., Electrochemical synthesis of Fe-Cu composites based on copper(II) ferrite and their electrocatalytic properties, Russ. J. Electrochem., 2020, vol. 56, p. 433.] https://doi.org/10.1134/s1023193520070034
- Farley, K.E., Marschilok, A.C., Takeuchi, E.S., and Takeuchi, K.J., Synthesis and electrochemistry of silver ferrite, Electrochem. Solid-State Lett., 2011, vol. 15, no. 2, p. A23. https://doi.org/10.1149/2.010202esl
- Murthy, Y.L.N., Rao, T.K., Kasiviswanath, I.V., and Singh, R., Synthesis and characterization of nano silver ferrite composite, J. Magn. Magn. Mater., 2010, vol. 322, p. 2071. https://doi.org/10.1016/j.jmmm.2010.01.036
- Ivanova, N.M., Visurkhanova, Ya.A., Soboleva, E.A., and Kenzhetaeva, S.O., Two-step fabrication of iron-containing polyaniline composites for electrocatalytic hydrogenation of nitroarenes, Electrochem. Comm., 2018, vol. 96, p. 66. https://doi.org/10.1016/j.elecom.2018.09.016
- Nasretdinova, G.R., Fazieeva, R.R., Osin, Y.N., Evtju-gin, G., Gubaidullin, A.T., Ziganshina, A.Y., and Yanikin, V.V., Methylviologen mediated electrochemical synthesis of catalytically active ultrasmall bimetallic PdAg nanoparticles stabilized by CTAC, Electrochem. Acta, 2018, vol. 285, p. 149. https://doi.org/10.1016/j.electacta.2018.07.109
补充文件
