The Analysis of Lithium Diffusion in the Cathode Material Particles of Primary Lithium-Manganese Cells by Measuring Electrochemical Noise and Magnetoresistance Relaxation.
- Авторлар: Ukshe A.E.1, Astafev E.A.1
-
Мекемелер:
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry RAS (FRC PCP and MC RAS)
- Шығарылым: Том 59, № 8 (2023)
- Беттер: 456-464
- Бөлім: Articles
- URL: https://kld-journal.fedlab.ru/0424-8570/article/view/670965
- DOI: https://doi.org/10.31857/S0424857023080091
- EDN: https://elibrary.ru/XYFORA
- ID: 670965
Дәйексөз келтіру
Аннотация
The process of lithium diffusion in the cathode material of lithium-manganese chemical power sources (CPS) after a short-term discharge are analyzed by an analyzing of the relaxation parameters of electrochemical noise and the magnitude of the magnetoresistance of the layer of injected lithium. It is shown that fluctuations in the diffusion flow of lithium are the source of electrochemical noise in such CPS. The data obtained also confirm the assumption made in the literature about the formation of a poorly conducting phase with a spinel crystal structure during the discharge of an element in the surface layer of MnO2 particles, which inhibits the diffusion process.
Авторлар туралы
A. Ukshe
Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry RAS (FRC PCP and MC RAS)
Email: ukshe@mail.ru
Chernogolovka, Russia
E. Astafev
Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry RAS (FRC PCP and MC RAS)
Хат алмасуға жауапты Автор.
Email: ukshe@mail.ru
Chernogolovka, Russia
Әдебиет тізімі
- Molenda, J., Ziemnicki, M., Molenda, M., Bućko, M., and Marzec, J., Transport and electrochemical properties of orthorhombic LiMnO2 cathode material for Li-ion batteries, Mater. Sci. Poland, 2006, vol. 24, p.75.
- Tan, H. and Wang, S., Kinetic behavior of manganese dioxide in Li/MnO2 primary batteries investigated using electrochemical impedance spectroscopy under nonequilibrium state, J. Electrochem. Soc., 2014, vol. 161, p. A1927. https://doi.org/10.1149/2.0981412jes
- Astafev, E.A. and Dobrovolsky, Yu.A., Relaxation electrochemical noise of Li/SOCl2 and Li/MnO2 primary batteries, J. Solid State Electrochem., 2019, vol. 23, p. 3319. https://doi.org/10.1007/s10008-019-04425-z
- Astafev, E.A., Ukshe, A.E., and Dobrovolsky, Y.A., Measurement of electrochemical noise of a Li/MnO2 primary lithium battery, J. Solid State Electrochem., 2018. vol. 22, p. 3597. https://doi.org/10.1007/s10008-018-4074-0
- Ukshe, A.E. and Astafev, E.A., Magnetoresistance analysis of intercalated lithium layer relaxation following discharge of primary lithium-manganese elements, J. Solid State Electrochem., 2022, vol. 26, p. 2765. https://doi.org/10.1007/s10008-022-05271-2
- Кошкина, А.А., Ярославцева, Т.В., Укше, А.Е., Кузнецов, М.В., Суриков, В.Т., Бушкова, О.В. Деградация поверхности литий-марганцевой шпинели в контакте с электролитным раствором, содержащим гексафторфосфат лития. Электрохимическая энергетика. 2023.
- Тихонов, А.Н., Самарский, А.А. Уравнения математической физики, М.: Наука, 2004 г.
- Цуканов, Д.А., Рыжкова, М.В. Исследование структурных и электрических свойств реконструированной поверхности Si(111) после адсорбции лития. ЖТФ. 2022. Т. 92. С. 1224. https://doi.org/10.21883/JTF.2022.08.52788.83-22
- Crooks, G.E., Entropy Production Fluctuation Theorem and the Nonequilibrium Work Relation for Free Energy Differences, Phys. Rev. E, 1999, vol. 60, p. 2721. [Crooks, G.E., The Entropy Production Fluctuation Theorem and the Nonequilibrium Work Relation for Free Energy Differences, arXiv:cond-mat/9901352v4.] https://doi.org/10.48550/arXiv.cond-mat/9901352https://doi.org/10.1103/PhysRevE.60.2721
- Астафьев, Е.А. Сравнение метода и аппаратуры электрохимического импеданса с методом измерения и анализа электрохимических шумов. Электрохимия. 2018. Т. 54. С. 1044. [Astafev, E.A., Comparing the method and hardware for electrochemical impedance with the method of measuring and analyzing electrochemical noise, Russ. J. Electrochem., 2018, vol. 54, p. 1022.] https://doi.org/10.1134/S1023193518130049https://doi.org/10.1134/S0424857018130066
- Графов, Б.М. Фрактальная теория диффузионного электрохимического шума. Электрохимия. 2015. Т. 51. С. 3. [Grafov, B.M., Fractal theory of electrochemical diffusion noise, Russ. J. Electrochem., 2015, vol. 51, p. 1.] https://doi.org/10.1134/S1023193516030046https://doi.org/10.7868/80424857015010077
- Каневский, Л.С., Графов, Б.М., Астафьев М.Г. Динамика электрохимических шумов литиевого электрода в апротонных органических электролитах. Электрохимия. 2005. Т. 41. С. 1226. [Kanevskii, L.S., Grafov, B.M., and Astaf’ev, M.G., Dynamics of electrochemical noise of the lithium electrode in aprotic organic electrolytes, Russ. J. Electrochem., 2005, vol. 41, p. 1091.] https://doi.org/10.1007/s11175-005-0186-9]
- Каневский, Л.С., Графов, Б.М. Исследование методом электрохимических шумов динамики пассивирования литиевого электрода в апротонных органических электролитах. Электрохимия. 2008. Т. 44. С. 615. [Kanevskii, L.S. and Grafov, B.M., Dynamics of lithium electrode passivation in aprotic organic electrolytes, studied by electrochemical noise method, Russ. J. Electrochem., 2008, vol. 44, p. 570.] https://doi.org/10.1134/S1023193508050108
- Каневский, Л.С. Исследование и диагностика литиевых источников тока методом электрохимических шумов I. Динамика электрохимических шумов литиевого электрода в апротонных органических электролитах. Электрохим. энергетика. 2008. Т. 8б. С. 92. [Kanevskii, L.S., Investigation and diagnostics of lithium power sources by the method of electrochemical noise I. Dynamics of electrochemical noise of a lithium electrode in aprotic organic electrolytes, Elektrochim. Energetika (in Russian), 2008, vol. 8б, p. 92.]
- Астафьев, М.Г., Каневский, Л.С., Графов, Б.М. Исследование электрохимических шумов литиевого электрода в органических электролитах методом корреляционных функций. Электрохимия. 2006. Т. 42. С. 586. [Astaf’ev, M.G., Kanevskii, L.S., and Grafov, B.M., Electrochemical noise of a lithium electrode in organic electrolytes: a study by a correlation function method, Russ. J. Electrochem., 2006, vol. 42, p. 523.] https://doi.org/10.1134/S1023193506050107
- Astafev, E.A., The instrument for electrochemical noise measurement of chemical power sources, Rev. Sci. Instrum., 2019, vol. 90, #025104. https://doi.org/10.1063/1.5079613
- Astafev, E., Electrochemical noise measurement methodologies of chemical power sources, Instrument. Sci. & Technol., 2019, vol. 47, p. 233. https://doi.org/10.1080/10739149.2018.1521423
- Martemianov, S., Adiutantov, N., Evdokimov, Y.K., Madier, L., Maillard, F., and Thomas, A., New methodology of electrochemical noise analysis and applications for commercial Li-ion batteries, J. Solid State Electrochem., 2015, vol. 19, p. 2803.
- Astafev, E. and Ukshe, A., Peculiarities of Hardware for Electrochemical Noise Measurement in Chemical Power Sources, IEEE Transactions on Instrument. and Measurement, 2019, vol. 68, p. 4412. https://doi.org/10.1109/TIM.2018.2889232
- Astafev, E.A., Wide frequency band measurement and analysis of electrochemical noise of Li/MnO2 primary battery, J. Solid State Electrochem., 2019, vol. 23, p. 1705. https://doi.org/10.1007/s10008-019-04274-w
Қосымша файлдар
