Effect the temperature and lithium polysulfides on the composition of lithium cathodic deposits formed on a steel electrode

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Using our method developed earlier, we studied the effect the lithium polysulfides on the amount and ratio of electrochemically active metallic lithium, electrochemically inactive metallic lithium, and chemically formed lithium compounds into cathode deposits formed on a stainless steel electrode during galvanostatic cycling in 1М solution of LiClO4 in sulfolane at 15, 30, 45 and 60°C. It is shown that an increase in temperature leads to an increase in the Coulomb efficiency of cycling and the amount of electrochemically active metallic lithium and a decrease in the amount of electrochemically inactive metallic lithium, regardless of the presence of lithium polysulfides into electrolyte. When lithium polysulfides are introduced into the electrolyte, an increase in the Coulomb efficiency of metallic lithium cycling and a change in the ratio of various forms of lithium in cathode deposits towards an increase in electrochemically active lithium by about 1.5 times are observed. It is assumed that lithium polysulfides contribute to the dissolution of electrochemically inactive metallic lithium, forming on the electrode an interface “sulfide” film with high ionic conductivity and good protective properties, especially at elevated temperatures.

Texto integral

Acesso é fechado

Sobre autores

E. Karaseva

Ufa Institute of Chemistry UFRC RAS

Autor responsável pela correspondência
Email: karaseva@anrb.ru
Rússia, Ufa

S. Mochalov

Ufa Institute of Chemistry UFRC RAS

Email: karaseva@anrb.ru
Rússia, Ufa

V. Kolosnitsyn

Ufa Institute of Chemistry UFRC RAS

Email: karaseva@anrb.ru
Rússia, Ufa

Bibliografia

  1. Lin, D., Liu, Y., and Cui, Y., Reviving the lithium metal anode for high-energy batteries, Nature Nanotech., 2017, vol. 12, no. 3, p. 194. https://doi.org/10.1038/nnano.2017.16
  2. Liu, B., Zhang, J.-G., and Xu, W., Advancing Lithium Metal Batteries, Joule, 2018, vol. 2, no. 5, p. 833. https://doi.org/10.1016/j.joule.2018.03.008
  3. Luo, Y., Guo, L., Xiao, M., Wang, S., Ren, S., Han, D., and Meng, Y., Strategies for inhibiting anode dendrite growth in lithium–sulfur batteries, J. Mater. Chem. A, 2020, vol. 8, p. 4629. https://doi.org/110.1039/c9ta12910c
  4. Mauger, A., Armand, M., Julien, C.M., and Zaghib, K., Challenges and issues facing lithium metal for solid-state rechargeable batteries, J. Power Sources, 2017, vol. 353, p. 333. http://dx.doi.org/10.1016/j.jpowsour.2017.04.018
  5. Hou, L.-P., Zhang, X.-Q., Li, B.-Q., and Zhang, Q., Cycling a Lithium Metal Anode at 90°C in a Liquid Electrolyte, Angew. Chem. Int. Ed., 2020, vol. 59, no. 35, p. 15109. https://doi.org/10.1002/anie.202002711
  6. Li, Z., Huang, J., Liaw, B.Y., Metzler, V., and Zhang, J., A review of lithium deposition in lithium-ion and lithium metal secondary batteries, J. Power Sources, 2014, vol. 254, p. 168. https://doi.org/10.1016/j.jpowsour.2013.12.099
  7. Guo, Y., Li, D., Xiong, R., and Li, H., Investigation of the temperature-dependent behaviours of Li metal anode, Chem. Commun., 2019, vol. 55, p. 9773. https://doi.org/10.1039/c9cc04897a
  8. Zhang, J., Khan, A., Liu, X., Lei, Y., Du, S., Lv, L., Zhao, H., and Luo, D., Research Progress of Anode-Free Lithium Metal Batteries, Crystals, 2022, vol. 12, no. 9, p. 1241. https://doi.org/10.3390/cryst12091241
  9. Qian, J., Adams, B. D., Zheng, J., Xu, W., Henderson, W. A., Wang, J., Bowden, M. E., Xu, S., Hu, J., and Zhang, J.-G., Anode-Free Rechargeable Lithium Metal Batteries, Adv. Funct. Mater., 2016, vol. 26, p. 7094. https://doi.org/10.1002/adfm.201602353
  10. Mogi, R., Inaba, M., Iriyama, Y., Abe, T., and Ogumi, Z., In Situ Atomic Force Microscopy Study on Lithium Deposition on Nickel Substrates at Elevated Temperatures, J. Electrochem. Soc., 2002, vol. 149, no. 4, p. A385. https://doi.org/10.1149/1.1454138
  11. Mogi, R., Inaba, M., Iriyama, Y., Abe, T., and Ogumi, Z., Surface film formation on nickel electrodes in propylene carbonate solution at elevated temperatures, J. Power Sources, 2002, vol. 108, no. 1–2, p. 163. https://doi.org/10.1016/S0378-7753(02)00031-9
  12. Aurbach, D. and Gottlieb, H., The electrochemical behavior of selected polar aprotic systems, Electrochim. Acta, 1989, vol. 34, no. 2, p. 141. https://doi.org/110.1016/0013-4686(89)87079-3
  13. Иванов, А.Л., Мочалов, С.Э., Карасева, Е.В., Колосницын, В.С. Влияние природы растворителя на состав катодных осадков, образующихся на стальном электроде при электроосаждении и растворении металлического лития. Электрохимия. 2022. Т. 58. С. 569. [Ivanov, A.L., Mochalov, S.E., Karaseva, E.V., and Kolosnitsyn, V.S., Effect of the Solvent Nature on the Composition of Cathodic Deposits Formed on a Steel Electrode during Electrodeposition and Dissolution of Lithium Metal, Russ. J. Electrochem., 2022, vol. 58, p. 798.] https://doi.org/110.1134/S1023193522090087
  14. Колосницын, В.С., Кузьмина, Е.В., Шеина, Л.В., Карасева, Е.В., Яковлева, А.А. Определение содержания сульфидной серы в растворах полисульфидов лития в апротонных растворителях методом кислотно-основного титрования. Изв. вузов. Сер. “Химия и хим. технология”. 2012. Т. 55. № 3. С. 22. [Kolosnitsyn, V.S., Kuzmina, E.V., Sheina, L.V., Karaseva, E.V., and Yakovleva, A.A., Determination of the content of sulfide sulfur in solutions of lithium polysulfides in aprotic solvents by the acid-base method titration, Izvestiya Vuzov. Ser. “Chemistry and Chemical Technology”. 2012, vol. 55, no. 3, p. 22.]
  15. Vincent, C.A. and Scrosati, B. Modern Batteries: An introduction to electrochemical power sources. Second edition, Oxford: Butterworth-Heinemann, 1997. 351 p.
  16. Osaka, T., Homma, T., Momma, T., and Yarimizu, H., In situ observation of lithium deposition processes in solid polymer and gel electrolytes, J. Electroanal. Chem., 1997, vol. 421, no. 1-2, p. 153. https://doi.org/10.1016/S0022-0728(96)04870-X
  17. Tang, M., Albertus, P., and Newman, J., Two-Dimensional Modeling of Lithium Deposition during Cell Charging, J. Electrochem. Soc., 2009, vol. 156, no. 5, p. A390. https://doi.org/10.1149/1.3095513
  18. Колосницын, В.С., Карасева, Е.В., Шакирова, Н.В. Особенности циклирования литиевого электрода в электролитных системах, содержащих полисульфиды лития. Сборник материалов VI Междунар. конф. “Фундаментальные проблемы электрохимической энергетики”. Саратов: Изд-во Сарат. ун-та, 2005. С. 446. [Kolosnitsyn, V.S., Karaseva, E.V., and Shakirova, N.V., Features of Lithium Electrode Cycling in Electrolytes Containing Lithium Polysulfides, Collection of materials VI Intern. conf. “Fundamental problems of electrochemical energy” (in Russian), Saratov: Saratov University Press. 2005. P. 446.]
  19. Колосницын, В.С., Карасева, Е.В., Иванов, А.Л. Электрохимия литиевого электрода в растворах полисульфидов лития. Электрохимия. 2008. Т. 44. С. 609. [Kolosnitsyn, V.S., Karaseva, E.V., and Ivanov, A.L., Electrochemistry of a Lithium Electrode in Lithium Polysulfide Solutions, Russ. J. Electrochem., 2008, vol. 44, p. 564.] https://doi.org/110.1134/S1023193508050091
  20. Kuzmina, E., Karaseva, E., Ivanov, A., and Kolosnitsyn, V., On the Factors Affecting Aging and Self-Discharge of Lithium–Sulfur Cells. Effect of Positive Electrode Composition, Energy Technol., 2019, article no. 1900134. https://doi.org/110.1002/ente.201900134
  21. Rauch, R.D., Abraham, K.M., Pearson, G.F., Surprenant, J.K., and Brummer, S.B., A Lithium/Dissolved Sulfur Battery with an Organic Electrolyte, J. Electrochem. Soc., 1979, vol. 126, no. 4, p. 523. https://doi.org/110.1149/1.2129079

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Change in the potential of the stainless steel electrode relative to the auxiliary electrode at the initial section of the 1st cycle of cathodic deposition of lithium (a) and cathode-anodic polarization in the first cycle (b) of SS | 1M LiClO4 solution in sulfolane | Li cells at different temperatures: 1 – 15°C, 2 – 30°C, 3 – 45°C, 4 – 60°C. Cycling conditions: i = 0.2 mA/cm2; Qcath. os. = 0.5 mA h/cm2.

Baixar (207KB)
3. Fig. 2. Change in the potential of the stainless steel electrode relative to the auxiliary electrode in the second (a) and tenth (b) cycles of cathode-anodic polarization of SS | 1M LiClO4 solution in sulfolane | Li cells at different temperatures: 1 – 15°C, 2 – 30°C, 3 – 45°C, 4 – 60°C. Cycling conditions: i = 0.2 mA/cm2; Qcath. os. = 0.5 mA h/cm2.

Baixar (226KB)
4. Fig. 3. Effect of temperature on the Coulomb efficiency (a, c) and composition of lithium cathode deposits (b, d) during cathode-anodic cycling of a stainless steel electrode at different temperatures: 1 – 15°C, 2 – 30°C, 3 – 45°C, 4 – 60°C. a, b – in 1M LiClO4 solution in sulfolane. c, d – in 1M LiClO4 solution in sulfolane saturated with 0.25m Li2Sn. Cycling conditions: i = 0.2 mA/cm2; Qcath. os. = 0.5 mA h/cm2.

Baixar (362KB)
5. Fig. 4. Diagrams of the composition of lithium cathode deposits formed on a stainless steel electrode during cycling in 1M LiClO4 solutions in sulfolane for 30 cycles at different temperatures. Cycling conditions: i = 0.2 mA/cm2; Qcath. os. = 0.5 mA h/cm2.

Baixar (292KB)
6. Fig. 5. Change in the potential of the stainless steel electrode relative to the auxiliary electrode at the initial stage of the 1st cycle of cathodic deposition of lithium (a) and cathode-anodic polarization in the second cycle (b) of SS | 1M LiClO4 solution in sulfolane cells saturated with 0.25m Li2Sn | Li at different temperatures: 1 – 15°C, 2 – 30°C, 3 – 45°C, 4 – 60°C. Cycling conditions: i = 0.2 mA/cm2; Qcath. os. = 0.5 mA h/cm2.

Baixar (237KB)
7. Fig. 6. Diagrams of the composition of lithium cathode deposits formed on a stainless steel electrode during cycling in a 1M LiClO4 solution in sulfolane saturated with 0.25m Li2Sn for 30 cycles at different temperatures. Cycling conditions: i = 0.2 mA/cm2; Qcath. os. = 0.5 mA h/cm2.

Baixar (272KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024