Study of high-temperature oxygen release from strontium cobaltite in quasi-equilibrium regimе

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In the present work, the results of high-temperature oxygen desorption from oxide with mixed conductivity composed of SrCoO3 – δ obtained via original quasi-equilibrium oxygen release technique were shown. Measurements were carried out with a characterized powder sample in a tubular reactor. The equilibrium phase diagram of the oxide in the temperature range and partial pressure of oxygen: 600–850 оC and 0.2–6⋅10-5 atm, respectively, was obtained. With the help of literary data, correlation of phase diagram regions with their corresponding structures was carried out.

Full Text

Restricted Access

About the authors

M. P. Popov

Institute of Solid State Chemistry and Mechanochemistry SB RAS

Author for correspondence.
Email: popov@solid.nsc.ru
Russian Federation, Novosibirsk

A. S. Bagishev

Institute of Solid State Chemistry and Mechanochemistry SB RAS

Email: popov@solid.nsc.ru
Russian Federation, Novosibirsk

A. P. Nemudry

Institute of Solid State Chemistry and Mechanochemistry SB RAS

Email: popov@solid.nsc.ru
Russian Federation, Novosibirsk

References

  1. Teraoka, Y., Zhang, H.M., Furukawa, S., and Yamazoe, N., Oxygen permeation through perovskite-type oxides, Chem. Lett., 1985, p. 1743.
  2. Shao, Z., et al., Investigation of the permeation behavior and stability of a Ba0.5Sr0.5Co0.8Fe 0.2O3 – δ oxygen membrane, J. Membr. Sci., 2000, vol. 172, p. 177.
  3. Asadi, A.A., et al., Preparation and oxygen permeation of La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) perovskite-type membranes: experimental study and mathematical modeling, Industrial & engineering chem. res., 2012, vol. 51, no. 7, p. 3069.
  4. Bouwmeester, H.J. and Gellings, P.J., The CRC handbook of solid-state electrochemistry, 1997, no. 544.6 CRC, p. 481–553.
  5. Sunarso, J., Baumann, S., Serra, J.M., Meulenberg, W.A., Liu, S., and Lin, Y.S., Mixed ionic-electronic conducting (MIEC) ceramic-based membranes for oxygen separation, J. Membr. Sci., 2008, vol. 320, p. 13.
  6. Marques, F.M.B., Kharton, V.V., Naumovich, E.N., Shaula, A.L., Kovalevsky, A.V., and Yaremchenko, A.A., Oxygen ion conductors for fuel cells and membranes: selected developments, Solid State Ionics, 2006, vol. 177, p. 1697.
  7. Pei, S., Kleefisch, M., Kobylinski, T.P., Faber, J., Udovich, C.A., Zhang-McCoy, V., Dabrowski, B., Balachandran, U., Mieville, R.L., and Poeppel, R.B., Failure mechanisms of ceramic membrane reactors in partial oxidation of methane to synthesis gas, Catal. Lett., 1994, vol. 30, p. 201.
  8. Ten Elshof, J.E., van Hassel, B.A., and Bouwmeester, H.J.M., Activation of methane using solid oxide membranes, Catal. Today, 1995, vol. 25, p. 397.
  9. Leo, A., Liu, Sh., and Diniz da Costa, J.C., Development of mixed conducting membranes for clean coal energy delivery, Intern. J. Greenh. Gas Con., 2009, vol. 3, p. 357.
  10. Mahato, N., et al., Progress in material selection for solid oxide fuel cell technology: A review, Progress in Mater. Sci., 2015, vol. 72, p. 141–337.
  11. Othman, M.H.D., et al., High‐performance, anode‐supported, microtubular SOFC prepared from single‐step‐fabricated, dual‐layer hollow fibers, Adv. Mater., 2011, vol. 23, no. 21, p. 2480.
  12. Pusz, J., Mohammadi, A., and Sammes, N.M., Fabrication and performance of anode-supported micro-tubular solid oxide fuel cells, J. Electrochem. Energy Conversion and Storage, 2006, vol. 3, p. 482.
  13. Mahata, T., et al., Fabrication of Ni-YSZ anode supported tubular SOFC through iso-pressing and co-firing route, Intern. J. Hydrogen Energy, 2012, vol. 37, no. 4, p. 3874.
  14. Zhang, L., et al., Fabrication and characterization of anode‐supported tubular solid‐oxide fuel cells by slip casting and dip coating techniques, J. Amer. Ceram. Soc., 2009, vol. 92, no. 2, p. 302.
  15. Shao, Z. and Haile, S.M., A high-performance cathode for the next generation of solid-oxide fuel cells, Nature, 2004, vol. 431, p. 170.
  16. Попов, М.П., Старков, И.А., Чижик, С.А., Бычков, С.Ф., Немудрый, А.П. Кислородный обмен в нестехиометрических оксидах со смешанной проводимостью: новые экспериментальные методики и методология получения/анализа равновесных и кинетических данных, Новосибирск: Изд-во Сиб. отд. РАН, 2019. 135 с. [Popov, M.P., Starkov, I.A., Chizhik, S.A., Bychkov, S.F., and Nemudry, A.P., Oxygen exchange in nonstoichiometric oxides with mixed conductivity: new experimental techniques and methodology for obtaining/analyzing equilibrium and kinetic data, Novosibirsk: Izdatel’stvo Sibirskogo Otdeleniya RAN, 2019, 135 p.]
  17. Starkov, I., Bychkov, S., Matvienko, A., and Nemudry, A., Oxygen release technique as a method for the determination of ‘’δ–pO2 –T’’ diagrams for MIEC oxides, Phys. Chem. Chem. Phys., 2014, vol. 16, p. 5527.
  18. Chizhik, S.A. and Nemudry, A.P., Nonstoichiometric oxides as a continuous homologous series: linear free-energy relationship in oxygen exchange, Phys. Chem. Chem. Phys., 2018, vol. 20, p. 18447.
  19. Chizhik, Stanislav A., Bychkov, Sergey F., Voloshin, Bogdan V., Popov, Mikhail P., and Nemudry, Alexander P., The Brønsted–Evans–Polanyi relationship in oxygen exchange of fuel cell cathode material SrCo0.9Ta0.1O3 – d with the gas phase, Phys. Chem. Chem. Phys., 2021, vol. 23, p. 1072.
  20. Chizhik, S.A., Kovalev, I.V., Popov, M.P., Bychkov, S.F., and Nemudry, A.P., Study of the isobaric and isostoichiometric kinetic parameters of oxygen exchange reaction of SrFe0.98Mo 0.02O3-δ MIEC perovskite, Chem. Engineering J., vol. 445, 1 October 2022, 136724.
  21. Chizhik, S.A., Popov, M.P., Kovalev, I.V., Bychkov, S.F., and Nemudry, A.P., Comparison of stationary and transient kinetic methods in determining the rate of surface exchange reaction between molecular oxygen and MIEC perovskite, Chem. Engineering J., 2022, vol. 450, 137970.
  22. Watanabe, H., Magnetic properties of perovskites containing Strontium I. Strontium-rich ferrites and cobaltites, J. Phys. Soc. Japan, 1957, vol. 12, p. 515.
  23. Watanabe, H. and Takeda, T., in: Y. Hoshino, et al. (Eds.), Proceedings of the International Conference on Ferrites (Kyoto, Japan, 1970): Univ. Park Press, Baltimore, MD. 1971. 588 p.
  24. Grenier, J.C., Ghodbane, S., Demazeau, G., Pouchard, M., and Hagenmuller, P., Le cobaltite de strontium Sr2Co2O5: Caracterisation et proprietes magnetiques, Mat. Res. Bull., 1979, vol. 14, p. 831.
  25. Grenier, J.C., Fournes, L., Pouchard, M., and Hagenmuller, P., A Mössbauer resonance investigation of 57Fe doped Sr2Co2O5, Mat. Res. Bull., 1986, vol. 21, p. 441.
  26. Takeda, T., Yamaguchi, Y., and Watanabe, H., Magnetic Structure of SrCoO2.5, J. Phys. Soc. Japan, 1972, vol. 33, p. 970.
  27. Takeda, Y., Kanno, R., Takada, Т., Yamamoto, O., Takano, M., and Bando, Y., Phase relation and oxygen-non-stoichiometry of perovskite-like compound SrCoOx (2.29 < x > 2.80), Z. anorg. allg. Chem., 1986, vol. 540–541, p. 259.
  28. Bezdicka, M.P., Oxydation de Sr2Co2O5 par voie electrochimique, Ph. D. thesis, 1993, 203 p.
  29. Vashook, V.V., Zinkevich, M.V., and Zonov, Yu.G., Phase relations in oxygen-deficient SrCoO2.5–δ, Solid State Ionics, 1999, vol. 116, p. 129.
  30. Alario-Franco, M.A., Henche, M.J.R., Regi, M.V., Calbet, J.M.G., Grenier, J.C., Wattiaux, A., and Hagenmuller, P., Microdomain texture and oxygen excess in the calcium-lanthanum ferrite: Ca2LaFe3O8, J. Solid State Chem., 1983, vol. 46, p. 23.
  31. Alario-Franco, M.A., Calbet, J.M.G., Regi, M.V., and Grenier, J.C., Brownmillerite-type microdomains in the calcium lanthanum ferrites: CaxLa1–xFeO3–y: I. 2/3
  32. Parras, M., Regi, M.V., Calbet, J.M.G., Alario-Franco, M.A., Grenier, J.C., and Hagenmuller, P., A reassessment of Ba2Fe2O5, Mat. Res. Bull., 1987, vol. 22, p. 1413.
  33. Grenier, J.C., Ea, N., Pouchard, M., and Hagenmuller, P., Structural transitions at high temperature in Sr2Fe2O5, J. Solid State Chem., 1985, vol. 58, p. 243.
  34. Шаплыгин, И.С., Лазарев, В.Б. Получение и свойства SrCoO3. Журн. неорган. химии. 1985. Т. 30. Вып. 12. С. 3214.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Installation for measuring oxygen exchange in SIEP oxides.

Download (93KB)
3. Fig. 2. Full-profile analysis of the X-ray diffraction pattern of SC oxide slowly cooled in air.

Download (105KB)
4. Fig. 3. Initial experimental desorption of oxygen from SC powder.

Download (101KB)
5. Fig. 4. Equilibrium phase diagram “3-δ – log pO2 – T” SC (T = 600–850 oC). The dots indicate equilibrium TG data.

Download (108KB)
6. Fig. 5. Equilibrium phase diagram “3-δ – log pO2 – T” SC (T = 600–850 oC) with the designation of the phase composition for each region. GP – hexagonal perovskite, PC – pseudocubic structure, BM – brownmillerite structure, CP – cubic perovskite.

Download (138KB)
7. Fig. 6. Three-dimensional representation of the equilibrium phase diagram “3-δ – log pO2 – T” SC (T = 600–850 oC).

Download (80KB)

Copyright (c) 2024 Russian Academy of Sciences