Sharp Increase in Expression of Subunit Genes and Activity of Proteasomes in Laringeal Ontogeny Is Associated with the Development of Squamous Cell Carcinoma

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Proteasomes, the most important participants in protein catabolism, maintain proteostasis and regulate cellular processes in ontogeny. Deviations in the functioning of proteasomes are associated with the development of various pathologies, including a number of oncological diseases. In this work, we studied changes in subunit gene expression and proteasome activity in laryngeal cancer tissue and epithelium of patients with chronic hyperplastic diseases of the larynx, which are considered obligate precancer. The activity of circulating proteasomes was also studied in the same groups of patients. The level of gene expression was assessed using quantitative reverse transcriptase PCR in real time. A method for assessing chymotrypsin-like (CTL) and caspase-like (CL) activities of proteasomes has been modified for the analysis of small volumes of biopsy samples. An increase in the level of expression of the proteasome genes (PSMB6, PSMB7, PSMB5, and PSMB4) in the tissues of squamous cell carcinoma of the larynx was shown compared to pre-tumor samples. An increase in CTL and CL activities of intracellular proteasomes in the malignant epithelium of the larynx was also found in comparison with the conditionally normal tissue and with the epithelium of patients with chronic hyperplastic diseases of the larynx. An increase in chymotrypsin-like activity was observed in circulating proteasomes. ROC-analysis (Receiver operating characteristic) revealed the relationship between PSMB5 mRNA expression and CTP activity of tissue proteasomes with the development of laryngeal cancer in patients with chronic hyperplastic diseases of the larynx. In the future, it is possible to use these indicators to develop a method for predicting the transition of precancer of the larynx to cancer.

About the authors

I. V. Kondakova

Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences

Author for correspondence.
Email: kondakova@oncology.tomsk.ru
Russia, 634050, Tomsk

E. A. Sidenko

Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences; Siberian State Medical University

Email: kondakova@oncology.tomsk.ru
Russia, 634050, Tomsk; Russia, 634050, Tomsk

T. M. Astakhova

Koltzov Institute of Developmental Biology of Russian Academy of Sciences

Email: kondakova@oncology.tomsk.ru
Russia, 119334, Moscow

G. V. Kakurina

Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences; Siberian State Medical University

Email: kondakova@oncology.tomsk.ru
Russia, 634050, Tomsk; Russia, 634050, Tomsk

E. E. Sereda

Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences; Siberian State Medical University

Email: kondakova@oncology.tomsk.ru
Russia, 634050, Tomsk; Russia, 634050, Tomsk

O. V. Cheremisina

Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences

Email: kondakova@oncology.tomsk.ru
Russia, 634050, Tomsk

E. L. Choynzonov

Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences; Siberian State Medical University

Email: kondakova@oncology.tomsk.ru
Russia, 634050, Tomsk; Russia, 634050, Tomsk

N. P. Sharova

Koltzov Institute of Developmental Biology of Russian Academy of Sciences

Email: kondakova@oncology.tomsk.ru
Russia, 119334, Moscow

References

  1. Дьяконов Е.Е., Цимоха А.С. Посттрансляционные модификации протеасом и их функциональное значение // Цитология. 2019, Т. 61. № 3. С. 175–184. https://doi.org/10.1134/S0041377119030039
  2. Зайкова Ю.Я., Евтеева И.Н., Цимоха А.С. Протеасомы и их возможная роль во внеклеточном пространстве // Цитология. 2013. Т. 55. № 11. С. 753–760.
  3. Нажмудинов И.И., Серебрякова И.Ю., Магомедова К.М. и др. Применение современных технологий в лечении предраковых заболеваний гортани // Вестник оториноларингологии. 2018. Т. 83. № 5. С. 45–48.
  4. Спирина Л.В., Бочкарева Н.В., Кондакова И.В. и др. Регуляция инсулиноподобных факторов роста и NF-κB протеасомной системой при раке эндометрия // Молекулярная биология. 2012. Т. 46. № 3. С. 452–460.
  5. Шашова Е.Е., Колегова Е.С., Кондакова И.В., Завьялов А.А. Внутриклеточный и циркулирующий пулы протеасом: значение при злокачественных новообразованиях различных локализаций // Сибирский онкологический журн. 2015. № 6. С. 76–82.
  6. Abbas R., Larisch S. Killing by degradation: regulation of apoptosis by the ubiquitin-proteasome-system // Cells. 2021. V. 10. № 12. P. 3465. https://doi.org/10.3390/cells10123465
  7. Budenholzer L., Cheng C.L., Li Y. et al. Proteasome structure and assembly // Mol. Biol. 2017. V. 429. № 22. P. 3500–3524. https://doi.org/10.1016/j.jmb.2017.05.027
  8. Choi W.H., Kim S., Park S. et al. Concept and application of circulating proteasomes // Experimental & Molecular Medicine. 2021. V. 53. № 10. P. 1539–1546. https://doi.org/10.1038/s12276-021-00692-x
  9. Ciolofan M.S., Vlăescu A.N., Mogoantă C.A. et al. Clinical, histological and immunohistochemical evaluation of larynx cancer // Curr Health Sci. J. 2017. V. 43. P. 367–375. https://doi.org/10.12865/CHSJ.43.04.14
  10. Erokhov P.A., Kulikov A.M., Karpova et al. Proteasomes in patient rectal cancer and different intestine locations: where does proteasome pool change? // Cancers. 2021. V. 13. P. 1108. https://doi.org/10.3390/cancers13051108
  11. Guo J.-Y., Jing Z.-Q., Li X.-J. et al. Bioinformatic analysis identifying PSMB 1/2/3/4/6/8/9/10 as prognostic indicators in clear cell renal cell carcinoma // Int. J. Med. Sci. 2022. V. 19. № 5. P. 796–812. https://doi.org/10.7150/ijms.71152
  12. Jiang T.X., Ma S., Han X. et al. Proteasome activator PA200 maintains stability of histone marks during transcription and aging // Theranostics. 2021. V. 11. № 3. P. 1458–1472. https://doi.org/10.7150/thno.48744
  13. Karpov N.S., Erokhov P.A., Sharova N.P. et al. How is the development of the rat’s small intestine related to changes in the proteasome pool? // Rus. J. Dev. Bio. 2022. V. 53. № 1. P. 41–50.
  14. Karpova Ya.D., Lyupina Yu.V., Astakhova T.M. et al. Immune proteasomes in the development of rat immune system // Bioorg. Khim. 2013. V. 39. P. 400–410. https://doi.org/10.1134/s1068162013040092
  15. Kondakova I.V., Shashova E.E., Sidenko E.A. et al. Estrogen receptors and ubiquitin proteasome system: Mutual regulation // Biomolecules. 2020. V. 10. № 4. P. 500. https://doi.org/10.3390/biom10040500
  16. Kondakova I.V., Spirina L.V., Shashova E.E. et al. Proteasome activity in tumors of the female reproductive system // Russian J. Bioorganic Chemistry. 2012. V. 38. № 1. P. 106–110. https://doi.org/10.1134/s106816201201013x
  17. Lee G.Y., Haverty P.M., Li L. et al. Comparative oncogenomics identifies PSMB4 and SHMT2 as potential cancer driver genes // Cancer Research. 2014. V. 74. № 11. P. 3114–3126. https://doi.org/10.1158/0008-5472.CAN-13-2683
  18. Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using Real-Time Quantitative PCR and the 2−ΔΔCT method // Methods. 2001. V. 25. № 4. P. 402–408. https://doi.org/10.1006/meth.2001.1262
  19. Luers J.C., Sircar K., Drebber U. et al. The impact of laryngeal dysplasia on the development of laryngeal squamous cell carcinoma // Eur. Arch Otorhinolaryngol. 2014. V. 71. № 3. P. 539–545. https://doi.org/10.1007/s00405-013-2670-2
  20. Ma W., Kantarjian H., O’Brien S. et al. Enzymatic activity of circulating proteasomes correlates with clinical behavior in patients with chronic lymphocytic leukemia // Cancer. 2008. V. 12. № 6. P. 1306–1312. https://doi.org/10.1002/cncr.23301
  21. Nocini R., Molteni G., Mattiuzzi C. Updates on larynx cancer epidemiology // Chin. J. Cancer Res. 2020. V. 32. P. 18–25. https://doi.org/10.21147/j.issn.1000-9604.2020.01.03
  22. Obid R., Redlich M., Tomeh C. The treatment of laryngeal cancer // Oral and Maxillofacial Surgery Clinics of North America. 2019. V. 31. № 1. P. 1–11. https://doi.org/10.1016/j.coms.2018.09.001
  23. Sahu I., Glickman M.H. Structural insights into substrate recognition and processing by the 20S proteasome // Biomolecules. 2021. V. 11(2). P. 148. https://doi.org/10.3390/biom11020148
  24. Sharova N.P., Astakhova T.M., Karpova Ya.D. et al. Changes in proteasome pool in human papillary thyroid carcinoma development // Cent. Eur. J. Biol. 2011. V. 6. № 4. P. 486–496.
  25. Siegel R.L., Miller K.D., Jemal A. Cancer statistics, 2020 // CA Cancer J. for Clinicians. 2020. V. 70. № 1. P. 7–30. https://doi.org/10.3322/caac.21590
  26. Wada M., Saito S. et al. Serum concentration and localization in tumor cells of proteasomes in patients with hematologic malignancy and their pathophysiologic significance // J. Lab. Clin. Med. 1993. V. 121. № 2. P. 215–223.
  27. Wang C.-Y., Li C.-Y., Hsu H.-P. et al. PSMB5 plays a dual role in cancer development and immunosuppression // American J. Cancer Research. 2017. V. 7. № 11. P. 2103–2120.
  28. Wang H., He Z., Xia L. et al. PSMB4 overexpression enhances the cell growth and viability of breast cancer cells leading to a poor prognosis // Oncol. Rep. 2018. V. 40. № 4. P. 2343–2352. Epub 2018 Jul 20.https://doi.org/10.3892/or.2018.6588

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (116KB)

Copyright (c) 2023 И.В. Кондакова, Е.А. Сиденко, Т.М. Астахова, Г.В. Какурина, Е.Е. Середа, О.В. Черемисина, Е.Л. Чойнзонов, Н.П. Шарова