Sharp Increase in Expression of Subunit Genes and Activity of Proteasomes in Laringeal Ontogeny Is Associated with the Development of Squamous Cell Carcinoma
- Authors: Kondakova I.V.1, Sidenko E.A.1,2, Astakhova T.M.3, Kakurina G.V.1,2, Sereda E.E.1,2, Cheremisina O.V.1, Choynzonov E.L.1,2, Sharova N.P.3
-
Affiliations:
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences
- Siberian State Medical University
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences
- Issue: Vol 54, No 3 (2023)
- Pages: 205-213
- Section: Original study articles
- URL: https://kld-journal.fedlab.ru/0475-1450/article/view/669934
- DOI: https://doi.org/10.31857/S0475145023030047
- EDN: https://elibrary.ru/ZRFHYM
- ID: 669934
Cite item
Abstract
Proteasomes, the most important participants in protein catabolism, maintain proteostasis and regulate cellular processes in ontogeny. Deviations in the functioning of proteasomes are associated with the development of various pathologies, including a number of oncological diseases. In this work, we studied changes in subunit gene expression and proteasome activity in laryngeal cancer tissue and epithelium of patients with chronic hyperplastic diseases of the larynx, which are considered obligate precancer. The activity of circulating proteasomes was also studied in the same groups of patients. The level of gene expression was assessed using quantitative reverse transcriptase PCR in real time. A method for assessing chymotrypsin-like (CTL) and caspase-like (CL) activities of proteasomes has been modified for the analysis of small volumes of biopsy samples. An increase in the level of expression of the proteasome genes (PSMB6, PSMB7, PSMB5, and PSMB4) in the tissues of squamous cell carcinoma of the larynx was shown compared to pre-tumor samples. An increase in CTL and CL activities of intracellular proteasomes in the malignant epithelium of the larynx was also found in comparison with the conditionally normal tissue and with the epithelium of patients with chronic hyperplastic diseases of the larynx. An increase in chymotrypsin-like activity was observed in circulating proteasomes. ROC-analysis (Receiver operating characteristic) revealed the relationship between PSMB5 mRNA expression and CTP activity of tissue proteasomes with the development of laryngeal cancer in patients with chronic hyperplastic diseases of the larynx. In the future, it is possible to use these indicators to develop a method for predicting the transition of precancer of the larynx to cancer.
About the authors
I. V. Kondakova
Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences
Author for correspondence.
Email: kondakova@oncology.tomsk.ru
Russia, 634050, Tomsk
E. A. Sidenko
Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences; Siberian State Medical University
Email: kondakova@oncology.tomsk.ru
Russia, 634050, Tomsk; Russia, 634050, Tomsk
T. M. Astakhova
Koltzov Institute of Developmental Biology of Russian Academy of Sciences
Email: kondakova@oncology.tomsk.ru
Russia, 119334, Moscow
G. V. Kakurina
Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences; Siberian State Medical University
Email: kondakova@oncology.tomsk.ru
Russia, 634050, Tomsk; Russia, 634050, Tomsk
E. E. Sereda
Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences; Siberian State Medical University
Email: kondakova@oncology.tomsk.ru
Russia, 634050, Tomsk; Russia, 634050, Tomsk
O. V. Cheremisina
Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences
Email: kondakova@oncology.tomsk.ru
Russia, 634050, Tomsk
E. L. Choynzonov
Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences; Siberian State Medical University
Email: kondakova@oncology.tomsk.ru
Russia, 634050, Tomsk; Russia, 634050, Tomsk
N. P. Sharova
Koltzov Institute of Developmental Biology of Russian Academy of Sciences
Email: kondakova@oncology.tomsk.ru
Russia, 119334, Moscow
References
- Дьяконов Е.Е., Цимоха А.С. Посттрансляционные модификации протеасом и их функциональное значение // Цитология. 2019, Т. 61. № 3. С. 175–184. https://doi.org/10.1134/S0041377119030039
- Зайкова Ю.Я., Евтеева И.Н., Цимоха А.С. Протеасомы и их возможная роль во внеклеточном пространстве // Цитология. 2013. Т. 55. № 11. С. 753–760.
- Нажмудинов И.И., Серебрякова И.Ю., Магомедова К.М. и др. Применение современных технологий в лечении предраковых заболеваний гортани // Вестник оториноларингологии. 2018. Т. 83. № 5. С. 45–48.
- Спирина Л.В., Бочкарева Н.В., Кондакова И.В. и др. Регуляция инсулиноподобных факторов роста и NF-κB протеасомной системой при раке эндометрия // Молекулярная биология. 2012. Т. 46. № 3. С. 452–460.
- Шашова Е.Е., Колегова Е.С., Кондакова И.В., Завьялов А.А. Внутриклеточный и циркулирующий пулы протеасом: значение при злокачественных новообразованиях различных локализаций // Сибирский онкологический журн. 2015. № 6. С. 76–82.
- Abbas R., Larisch S. Killing by degradation: regulation of apoptosis by the ubiquitin-proteasome-system // Cells. 2021. V. 10. № 12. P. 3465. https://doi.org/10.3390/cells10123465
- Budenholzer L., Cheng C.L., Li Y. et al. Proteasome structure and assembly // Mol. Biol. 2017. V. 429. № 22. P. 3500–3524. https://doi.org/10.1016/j.jmb.2017.05.027
- Choi W.H., Kim S., Park S. et al. Concept and application of circulating proteasomes // Experimental & Molecular Medicine. 2021. V. 53. № 10. P. 1539–1546. https://doi.org/10.1038/s12276-021-00692-x
- Ciolofan M.S., Vlăescu A.N., Mogoantă C.A. et al. Clinical, histological and immunohistochemical evaluation of larynx cancer // Curr Health Sci. J. 2017. V. 43. P. 367–375. https://doi.org/10.12865/CHSJ.43.04.14
- Erokhov P.A., Kulikov A.M., Karpova et al. Proteasomes in patient rectal cancer and different intestine locations: where does proteasome pool change? // Cancers. 2021. V. 13. P. 1108. https://doi.org/10.3390/cancers13051108
- Guo J.-Y., Jing Z.-Q., Li X.-J. et al. Bioinformatic analysis identifying PSMB 1/2/3/4/6/8/9/10 as prognostic indicators in clear cell renal cell carcinoma // Int. J. Med. Sci. 2022. V. 19. № 5. P. 796–812. https://doi.org/10.7150/ijms.71152
- Jiang T.X., Ma S., Han X. et al. Proteasome activator PA200 maintains stability of histone marks during transcription and aging // Theranostics. 2021. V. 11. № 3. P. 1458–1472. https://doi.org/10.7150/thno.48744
- Karpov N.S., Erokhov P.A., Sharova N.P. et al. How is the development of the rat’s small intestine related to changes in the proteasome pool? // Rus. J. Dev. Bio. 2022. V. 53. № 1. P. 41–50.
- Karpova Ya.D., Lyupina Yu.V., Astakhova T.M. et al. Immune proteasomes in the development of rat immune system // Bioorg. Khim. 2013. V. 39. P. 400–410. https://doi.org/10.1134/s1068162013040092
- Kondakova I.V., Shashova E.E., Sidenko E.A. et al. Estrogen receptors and ubiquitin proteasome system: Mutual regulation // Biomolecules. 2020. V. 10. № 4. P. 500. https://doi.org/10.3390/biom10040500
- Kondakova I.V., Spirina L.V., Shashova E.E. et al. Proteasome activity in tumors of the female reproductive system // Russian J. Bioorganic Chemistry. 2012. V. 38. № 1. P. 106–110. https://doi.org/10.1134/s106816201201013x
- Lee G.Y., Haverty P.M., Li L. et al. Comparative oncogenomics identifies PSMB4 and SHMT2 as potential cancer driver genes // Cancer Research. 2014. V. 74. № 11. P. 3114–3126. https://doi.org/10.1158/0008-5472.CAN-13-2683
- Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using Real-Time Quantitative PCR and the 2−ΔΔCT method // Methods. 2001. V. 25. № 4. P. 402–408. https://doi.org/10.1006/meth.2001.1262
- Luers J.C., Sircar K., Drebber U. et al. The impact of laryngeal dysplasia on the development of laryngeal squamous cell carcinoma // Eur. Arch Otorhinolaryngol. 2014. V. 71. № 3. P. 539–545. https://doi.org/10.1007/s00405-013-2670-2
- Ma W., Kantarjian H., O’Brien S. et al. Enzymatic activity of circulating proteasomes correlates with clinical behavior in patients with chronic lymphocytic leukemia // Cancer. 2008. V. 12. № 6. P. 1306–1312. https://doi.org/10.1002/cncr.23301
- Nocini R., Molteni G., Mattiuzzi C. Updates on larynx cancer epidemiology // Chin. J. Cancer Res. 2020. V. 32. P. 18–25. https://doi.org/10.21147/j.issn.1000-9604.2020.01.03
- Obid R., Redlich M., Tomeh C. The treatment of laryngeal cancer // Oral and Maxillofacial Surgery Clinics of North America. 2019. V. 31. № 1. P. 1–11. https://doi.org/10.1016/j.coms.2018.09.001
- Sahu I., Glickman M.H. Structural insights into substrate recognition and processing by the 20S proteasome // Biomolecules. 2021. V. 11(2). P. 148. https://doi.org/10.3390/biom11020148
- Sharova N.P., Astakhova T.M., Karpova Ya.D. et al. Changes in proteasome pool in human papillary thyroid carcinoma development // Cent. Eur. J. Biol. 2011. V. 6. № 4. P. 486–496.
- Siegel R.L., Miller K.D., Jemal A. Cancer statistics, 2020 // CA Cancer J. for Clinicians. 2020. V. 70. № 1. P. 7–30. https://doi.org/10.3322/caac.21590
- Wada M., Saito S. et al. Serum concentration and localization in tumor cells of proteasomes in patients with hematologic malignancy and their pathophysiologic significance // J. Lab. Clin. Med. 1993. V. 121. № 2. P. 215–223.
- Wang C.-Y., Li C.-Y., Hsu H.-P. et al. PSMB5 plays a dual role in cancer development and immunosuppression // American J. Cancer Research. 2017. V. 7. № 11. P. 2103–2120.
- Wang H., He Z., Xia L. et al. PSMB4 overexpression enhances the cell growth and viability of breast cancer cells leading to a poor prognosis // Oncol. Rep. 2018. V. 40. № 4. P. 2343–2352. Epub 2018 Jul 20.https://doi.org/10.3892/or.2018.6588
Supplementary files
