Evidence of early zygotic genome activation in development of the annelid Ophelia limacina
- Authors: Grinberg M.G.1, Borisenko I.E.1, Kozin V.V.1
-
Affiliations:
- St. Petersburg State University
- Issue: Vol 56, No 1 (2025)
- Pages: 14-23
- Section: Original study articles
- URL: https://kld-journal.fedlab.ru/0475-1450/article/view/685003
- DOI: https://doi.org/10.31857/S0475145025010028
- EDN: https://elibrary.ru/KVFILB
- ID: 685003
Cite item
Abstract
A key event in early embryonic development is activation of zygotic gene expression. The mechanisms of this process have been well studied in only a few model organisms, which do not fully reflect the diversity of developmental patterns and cell fate determination strategies. Among bilaterian animals, representatives of the Spiralia clade, which exhibit remarkable conservation and determinative specification of cell lineages, remain largely unexplored in terms of genome activation. In this study, we used transcriptomic analysis to investigate zygotic genome activation in the White Sea annelid Ophelia limacina, which exhibits homoquadrant (equal) spiral cleavage. We demonstrate that zygotic transcription begins as early as the 8-cell stage, leading to the upregulation of thousands of genes, including components of the Wnt and TGF-β signaling pathways, as well as transcription factors such as Sox2—a conserved regulator of pluripotency and genome activation in vertebrates. These findings broaden our understanding of the variability of molecular mechanisms underlying zygotic genome activation and raise new questions regarding the potential evolutionary conservation of key factors involved in this process.
Full Text

About the authors
M. G. Grinberg
St. Petersburg State University
Email: greenerkk@gmail.com
Department of Embryology
Russian Federation, Universitetskaya nab. 7/9, St. Petersburg, 199034I. E. Borisenko
St. Petersburg State University
Email: ilja.borisenko@gmail.com
Department of Embryology
Russian Federation, Universitetskaya nab. 7/9, St. Petersburg, 199034V. V. Kozin
St. Petersburg State University
Author for correspondence.
Email: v.kozin@spbu.ru
Department of Embryology
Russian Federation, Universitetskaya nab. 7/9, St. Petersburg, 199034References
- Дондуа А.К. Репрограммирование контроля над развитием в раннем онтогенезе многоклеточных животных // Журнал общей биологии. 1979. Т. 60. C. 530–543.
- Козин В.В., Борисенко И.Е., Костюченко Р.П. Участие канонического сигнального пути Wnt в определении полярности тела и клеточной идентичности у Metazoa: Новые данные о развитии губок и аннелид // Известия Российской академии наук. Серия Биологическая. 2019. № 1. C. 19–30. https://doi.org/10.1134/S000233291901003X
- Barral A., Zaret K.S. Pioneer factors: Roles and their regulation in development. // Trends in Genetics. 2024. V. 40(2). P. 134–148. https://doi.org/10.1016/j.tig.2023.10.007
- Carrillo-Baltodano A.M., Seudre O., Guynes K., Martín-Durán J.M. Early embryogenesis and organogenesis in the annelid Owenia fusiformis // EvoDevo. 2021. V. 12(1). P. 5. https://doi.org/10.1186/s13227-021-00176-z
- Chou H.-C., Pruitt M.M., Bastin B.R., Schneider S.Q. A transcriptional blueprint for a spiral-cleaving embryo // BMC Genomics. 2016. V. 17(1). P. 552. https://doi.org/10.1186/s12864-016-2860-6
- Henry J.Q. Spiralian model systems // The International Journal of Developmental Biology. 2014. V. 58(6–8). P. 389–401. https://doi.org/10.1387/ijdb.140127jh
- Heyn P., Kircher M., Dahl A., Kelso J., Tomancak P., Kalinka A.T., Neugebauer K.M. The Earliest Transcribed Zygotic Genes Are Short, Newly Evolved, and Different across Species // Cell Reports. 2014. V. 6. P. 285–292. https://doi.org/10.1016/j.celrep.2013.12.030
- Lee M.T., Bonneau A.R., Giraldez A.J. Zygotic genome activation during the maternal-to-zygotic transition // Annual Review of Cell and Developmental Biology. 2014. V. 30. P. 581–613. https://doi.org/10.1146/annurev-cellbio-100913-013027
- Liang Y., Wei J., Kang Y., Carrillo-Baltodano A.M., Martín-Durán J.M. Cell fate specification modes shape transcriptome evolution in the highly conserved spiral cleavage (p. 2024.12.25.630330) // bioRxiv. 2024. https://doi.org/10.1101/2024.12.25.630330
- Nikishin D., Rimskaya-Korsakova N., Kremnyov S., Bagayeva T., Khramova Y., Semenova M., Kosevich I., Kraus Y., Vortsepneva E., Lavrov A., Prudkovsky A. (2019). Atlas of the White Sea Invertebrates Development. 3rd Summer Course on Embryology of Marine Invertebrates, June 9–30, 2019, WSBS MSU, Russia.
- Niwa H., Nakamura A., Urata M., et al. The evolutionally-conserved function of group B1 Sox family members confers the unique role of Sox2 in mouse ES cells // BMC Evolutionary Biology. 2016. V. 16(1). P. 173. https://doi.org/10.1186/s12862-016-0755-4
- O’Farrell P.H., Stumpff J., Su T.T. Embryonic cleavage cycles: How is a mouse like a fly? // Current Biology: 2004. V. 14(1). P. R35–45. https://doi.org/10.1016/j.cub.2003.12.022
- Onichtchouk D., Driever, W. Zygotic Genome Activators, Developmental Timing, and Pluripotency // Current Topics in Developmental Biology. 2016. V. 116. P. 273–297. https://doi.org/10.1016/bs.ctdb.2015.12.004
- Sur A., Magie C., Seaver E., Meyer N. Spatiotemporal regulation of nervous system development in the annelid Capitella teleta // EvoDevo. 2017. V. 8. https://doi.org/10.1186/s13227-017-0076-8
- Tadros W., Lipshitz H.D. The maternal-to-zygotic transition: A play in two acts // Development. 2009. V. 136(18). P. 3033–3042. https://doi.org/10.1242/dev.033183
- Vastenhouw N.L., Cao W.X., Lipshitz H.D. The maternal-to-zygotic transition revisited // Development. 2019. V. 146(11). ArtNo. dev161471. https://doi.org/10.1242/dev.161471
Supplementary files
