Reprogramming of Primed Human Pluripotent Stem Cells into a Naive State

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Human pluripotent stem cells (PSCs) can be maintained in a naive or primed state of pluripotency in vitro. Being in one state or another, PSCs have different potentials of differentiation into extra-embryonic and germinal derived cells of the embryo. In terms of the expression profile and epigenetic pattern of the genome, naive PSCs are comparable to the cells of the inner cell mass of the blastocyst, while primed PSCs are similar in their characteristics to the cells of the postimplantation epiblast. Reprogramming of primed PSCs into the naive state and maintenance of naïve PSCs in culture is a crucial issue in studying the epigenetic processes of preimplantation development of the human embryo and methods for efficient differentiation of PSCs into derivatives of embryonic and extra-embryonic cells. The aim of this work is to reprogram primed induced pluripotent stem cells (iPSCs) into a naïve pluripotent state to obtain a homogeneous population of iPSCs according to the state of pluripotency in culture. The task of this work is to develop a protocol and conditions for reprogramming primed iPSCs into a naive state of pluripotency. In this work, naive iPSCs were obtained under conditions of application of growth factors FGF2, TGFβ1 and inhibition of GSK3β and the MEK/ERK signaling pathway (2iF medium). Pretreatment of primed iPSCs with histone deacetylase inhibitors (HDACi) changes the cell morphology and gene expression profile of PSCs towards an earlier state of pluripotency. Using pretreatment of HDACi primed iPSCs followed by maintaining in 2iF medium, we obtained naive iPSCs comparable in colony morphology and expression profile of naive state marker genes with control naive iPSCs obtained in RSeT medium. In order to confirm the naive state of pluripotency of iPSCs obtained 2iF conditions, it is necessary to carry out single cell RNA sequencing.

About the authors

V. K. Abdyev

Koltzov Institute of Developmental Biology of the Russian Academy of Sciences

Author for correspondence.
Email: mailtovepa@gmail.com
Russia, 119334, Moscow, ul. Vavilova 26

A. L. Rippa

Koltzov Institute of Developmental Biology of the Russian Academy of Sciences

Email: mailtovepa@gmail.com
Russia, 119334, Moscow, ul. Vavilova 26

N. A. Arakelyan

Koltzov Institute of Developmental Biology of the Russian Academy of Sciences

Email: mailtovepa@gmail.com
Russia, 119334, Moscow, ul. Vavilova 26

E. A. Vorotelyak

Koltzov Institute of Developmental Biology of the Russian Academy of Sciences

Email: mailtovepa@gmail.com
Russia, 119334, Moscow, ul. Vavilova 26

A. V. Vasiliev

Koltzov Institute of Developmental Biology of the Russian Academy of Sciences

Email: mailtovepa@gmail.com
Russia, 119334, Moscow, ul. Vavilova 26

References

  1. Ávila-González D., Portillo W., García-López G. et al. Unraveling the spatiotemporal human pluripotency in embryonic development // Front. Cell Dev. Biol. 2021. V. 9. https://doi.org/10.3389/FCELL.2021.676998/BIBTEX
  2. Blakeley P., Fogarty N.M.E., Del Valle I. et al. Defining the three cell lineages of the human blastocyst by single-cell RNA-seq // Development. 2015. V. 142. № 18. P. 3151–3165. https://doi.org/10.1242/dev.123547
  3. Chen H., Aksoy I., Gonnot F. et al. Reinforcement of STAT3 activity reprogrammes human embryonic stem cells to naive-like pluripotency // Nat. Commun. 2015. V. 6. №1. https://doi.org/10.1038/ncomms8095
  4. Chen T., Ueda Y., Xie S., Li E. A Novel Dnmt3a isoform produced from an alternative promoter localizes to euchromatin and its expression correlates with activede covo methylation // J. Biol. Chem. 2002. V. 277. № 41. P. 38746–38754. https://doi.org/10.1074/JBC.M205312200
  5. Collier A.J., Panula S.P., Schell J.P. et al. Comprehensive cell surface protein profiling identifies specific markers of human naive and primed pluripotent states // Cell Stem Cell. 2017. V. 20. № 6. P. 874–890.e7. https://doi.org/10.1016/J.STEM.2017.02.014
  6. Dahéron L., Opitz S. L., Zaehres H. et al. LIF/STAT3 signaling fails to maintain self-renewal of human embryonic stem cells // Stem Cells. 2004. V. 22. № 5. P. 770–778. https://doi.org/10.1634/stemcells.22-5-770
  7. Evans M.J., Kaufman M.H. Establishment in culture of pluripotential cells from mouse embryos // Nature. 1981. V. 292. № 5819. P. 154–156. https://doi.org/10.1038/292154a0
  8. Gafni O., Weinberger L., Mansour A.A. et al. Derivation of novel human ground state naive pluripotent stem cells // Nature. 2013. V. 504. № 7479. P. 282–286. https://doi.org/10.1038/nature12745
  9. Gharibi B., Gonçalves E., Nashun B. et al. A FGF2-mediated incoherent feedforward loop induces Erk inhibition and promotes naïve pluripotency // BioRxiv. 2020. https://doi.org/10.1101/2020.11.11.378869
  10. Gordeev M.N., Bakhmet E.I., Tomilin A.N. Pluripotency dynamics during embryogenesis and in cell culture // Russ. J. Dev. Biol. 2021. V. 52 № 6. P. 379–389. https://doi.org/10.1134/S1062360421060059
  11. Göttlicher M., Minucci S., Zhu P. et al. Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells // EMBO J. 2001. V. 20. № 24. P. 6969–6978. https://doi.org/10.1093/emboj/20.24.6969
  12. Guo G., Meyenn F. Von, Rostovskaya M. et al. Epigenetic resetting of human pluripotency // Development. 2018. V. 145. № 8. https://doi.org/10.1242/dev.166397
  13. Guo G., Stirparo G.G., Strawbridge S.E. et al. Human naive epiblast cells possess unrestricted lineage potential // Cell Stem Cell. 2021. V. 28. № 6. P. 1040–1056.e6. https://doi.org/10.1016/J.STEM.2021.02.025
  14. Hanna J., Cheng A.W., Saha K. et al. Human embryonic stem cells with biological and epigenetic characteristics similar to those of mouse ESCs // Proc. Natl. Acad. Sci. USA. 2010. V. 107. № 20. P. 9222–9227. https://doi.org/10.1073/pnas.1004584107
  15. Huangfu D., Maehr R., Guo W. et al. Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds // Nat. Biotechnol. 2008. V. 26. № 7. P. 795–797. https://doi.org/10.1038/nbt1418
  16. Ito K., Adcock I.M. Histone acetylation and histone deacetylation // Mol. Biotechnol. 2002. V. 20. № 1. P. 99–106. https://doi.org/10.1385/MB:20:1:099
  17. Jeronimo C., Robert F. The mediator complex: at the nexus of RNA polymerase II transcription // Trends Cell Biol. 2017. V. 27. № 10. P. 765–783. https://doi.org/10.1016/j.tcb.2017.07.001
  18. Johnstone R.W. Histone-deacetylase inhibitors: novel drugs for the treatment of cancer // Nat. Rev. Drug Discov. 2002. V. 1. № 4. P. 287–299. https://doi.org/10.1038/nrd772
  19. Kilens S., Meistermann Di., Moreno Di. et al. Parallel derivation of isogenic human primed and naive induced pluripotent stem cells // Nat. Commun. 2018. V. 9. № 1. P. 1–13. https://doi.org/10.1038/s41467-017-02107-w
  20. Lagarkova M.A., Eremeev A.V., Svetlakov A.V. Human embryonic stem cell lines isolation, cultivation, and characterization // In Vitro Cell. Dev. Biol. 2010. V. 46. № 3–4. P. 284–293. https://doi.org/10.1007/s11626-010-9282-6
  21. Lau K.X., Mason E.A., Kie J. et al. Unique properties of a subset of human pluripotent stem cells with high capacity for self-renewal // Nat. Commun. 2020. V. 11. № 1. P. 1–18. https://doi.org/10.1038/s41467-020-16214-8
  22. Leitch H.G., McEwen K.R., Turp A. et al. Naive pluripotency is associated with global DNA hypomethylation // Nat. Struct. Mol. Biol. 2013. V. 20. № 3. P. 311–316. https://doi.org/10.1038/nsmb.2510
  23. Levenstein M.E., Ludwig T.E., Xu R.-H. et al. Basic fibroblast growth factor support of human embryonic stem cell self-renewal // Stem Cells. 2006. V. 24. № 3. P. 568–574. https://doi.org/10.1634/STEMCELLS.2005-0247
  24. Liu T., Li J., Yu L. et al. Cross-species single-cell transcriptomic analysis reveals pre-gastrulation developmental differences among pigs, monkeys, and humans // Cell Discov. 2021. V. 7. № 1. P. 1–17. https://doi.org/10.1038/s41421-020-00238-x
  25. Liu X., Nefzger C.M., Rossello F.J. et al. Comprehensive characterization of distinct states of human naive pluripotency generated by reprogramming // Nat. Methods. 2017. V. 4. № 11. P. 1055–1062. https://doi.org/10.1038/nmeth.4436
  26. Lynch C.J., Bernad R., Martínez-Val A. et al. Global hyperactivation of enhancers stabilizes human and mouse naive pluripotency through inhibition of CDK8/19 Mediator kinases // Nat. Cell Biol. 2020. V. 22. № 10. P. 1223–1238. https://doi.org/10.1038/s41556-020-0573-1
  27. Mazid M.A., Ward C., Luo Z. et al. Rolling back human pluripotent stem cells to an eight-cell embryo-like stage // Nature. 2022. V. 605. № 7909. P. 315–324. https://doi.org/10.1038/s41586-022-04625-0
  28. Molè M.A., Coorens T.H.H., Shahbazi M.N. et al. A single cell characterisation of human embryogenesis identifies pluripotency transitions and putative anterior hypoblast centre // Nat. Commun. 2021. V. 12. № 1. P. 1–12. https://doi.org/10.1038/s41467-021-23758-w
  29. Nichols J., Smith A. Naive and primed pluripotent states // Cell Stem Cell. V. 4. № 6. P. 487–492. https://doi.org/10.1016/j.stem.2009.05.015
  30. Novo C.L.A. Tale of two states: pluripotency regulation of telomeres // Front. Cell Dev. Biol. 2021. V. 9. https://doi.org/10.3389/FCELL.2021.703466
  31. Okashita N., Kumaki Y., Ebi K. et al. PRDM14 promotes active DNA demethylation through the Teneleven translocation (TET)-mediated base excision repair pathway in embryonic stem cells // Development. 2014. V. 141. № 2. P. 269–280. https://doi.org/10.1242/dev.099622
  32. Posfai E., Schell J.P., Janiszewski A. et al. Evaluating totipotency using criteria of increasing stringency // Nat. Cell Biol. 2021. V. 23. № 1. P. 49–60. https://doi.org/10.1038/s41556-020-00609-2
  33. Rossant J., Tam P.P.L. New insights into early human development: lessons for stem cell derivation and differentiation // Cell Stem Cell. 2017. V. 20. № 1. P. 18–28. https://doi.org/10.1016/j.stem.2016.12.004
  34. Saraiva N.Z., Oliveira C.S., Garcia J.M. Histone acetylation and its role in embryonic stem cell differentiation // World J. Stem Cells. 2010. V. 2. № 6. P. 121. https://doi.org/10.4252/WJSC.V2.I6.121
  35. Seki Y. PRDM14 is a unique epigenetic regulator stabilizing transcriptional networks for pluripotency // Front. Cell Dev. Biol. 2018. V. 6. № 12. https://doi.org/10.3389/fcell.2018.00012
  36. Seto E., Yoshida M. Erasers of histone acetylation: the histone deacetylase enzymes // Cold Spring Harb. perspect. biol. 2014. V. 6. № 4. P. a018713. https://doi.org/10.1101/CSHPERSPECT.A018713
  37. Shahbazi M.N. Mechanisms of human embryo development: from cell fate to tissue shape and back // Development. 2020. V. 147. № 14. https://doi.org/10.1242/dev.190629
  38. Sim Y.-J., Kim M.-S., Nayfeh A., Yun Y.-J. et al. 2i Maintains a naive ground state in ESCs through two distinct epigenetic mechanisms // Stem Cell Reports. 2017. V. 8. № 5. P. 1312–1328. https://doi.org/10.1016/j.stemcr.2017.04.001
  39. Smith A.G. Embryo-derived stem cells: of mice and men // Annu. Rev. Cell Dev. Biol. 2003. V. 17. № 1. P. 435–462. https://doi.org/10.1146/ANNUREV.CELLBIO.17.1.435
  40. Strahl B.D., Allis C.D. The language of covalent histone modifications // Nature. 2000. V. 403. № 6765. P. 41–45. https://doi.org/10.1038/47412
  41. Takahashi K., Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors // Cell. V. 126. № 4. P. 663–676. https://doi.org/10.1016/j.cell.2006.07.024
  42. Vallier L., Mendjan S., Brown S. et al. Activin/Nodal signalling maintains pluripotency by controlling Nanog expression // Development. 2009. V. 136. № 8. P. 1339–1349. https://doi.org/10.1242/dev.033951
  43. Ware C.B., Nelson A.M., Mecham B. et al. Derivation of naive human embryonic stem cells // Proc. Natl. Acad. Sci. USA. 2014. V. 111. № 12. P. 4484–4489. https://doi.org/10.1073/pnas.1319738111
  44. Ware C.B., Wang L., Mecham B.H. et al. Histone deacetylase inhibition elicits an evolutionarily conserved self-renewal program in embryonic stem cells // Cell Stem Cell. 2009. V. 4. № 4. P. 359–369. https://doi.org/10.1016/j.stem.2009.03.001
  45. Weatherbee B.A.T., Cui T., Zernicka-Goetz M. Modeling human embryo development with embryonic and extra-embryonic stem cells // Dev. Biol. 2021. V. 474. P. 91–99. https://doi.org/10.1016/j.ydbio.2020.12.010
  46. Wolffe A.P. Sinful repression // Nature. 1997. V. 387. № 6628. P. 16–17. https://doi.org/10.1038/387016a0
  47. Yamamoto M., Suwa Y., Sugiyama K. et al. PRDM14-CtBP1/2-PRC2 complex regulates transcriptional repression during transition from primed to naïve pluripotency // J. Cell Sci. 2020. https://doi.org/10.1242/jcs.240176
  48. Yamauchi K., Ikeda T., Hosokawa M. et al. Overexpression of nuclear receptor 5A1 induces and maintains an intermediate state of conversion between primed and naive pluripotency // Stem Cell Rep. 2020. V. 14. № 3. P. 506–519. https://doi.org/10.1016/j.stemcr.2020.01.012
  49. Ying Q.-L., Wray J., Nichols J. et al. The ground state of embryonic stem cell self-renewal // Nature. 2008. V. 453. № 7194. P. 519–523. https://doi.org/10.1038/nature06968

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (1MB)
3.

Download (1MB)
4.

Download (568KB)
5.

Download (998KB)
6.

Download (181KB)
7.

Download (1MB)
8.

Download (435KB)

Copyright (c) 2023 В.К. Абдыев, А.Л. Риппа, Н.А. Аракелян, Е.А. Воротеляк, А.В. Васильев