К вопросу о присутствии оогониальных стволовых клеток в яичниках взрослых птиц

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Среди позвоночных у некоторых рыб, амфибий и рептилий оогониальные стволовые клетки (ОСК) поддерживают оогенез в яичниках взрослых самок, обеспечивая появление новых ооцитов в течение каждого периода размножения. В классической литературе XIX–XX веков утвердилось представление, что у млекопитающих и птиц резерв ооцитов формируется исключительно в эмбриогенезе, и в постнатальных и взрослых яичниках ОСК отсутствуют. Однако в 2004 г. впервые были описаны ОСК в яичниках взрослых самок мыши, что поставило под сомнение традиционные представления о невозможности постнатального неооогенеза у млекопитающих, и несмотря на растущее число исследований, эта проблема до сих пор остается дискуссионной. Развитие молекулярных и клеточных методов позволило существенно расширить понимание оогенеза у разных групп животных. Недавнее исследование организации яичников взрослых кур выявило признаки существования в них ОСК, что также ставит под вопрос устоявшиеся представления об отсутствии воспроизводства ооцитов у взрослых самок птиц. В представленном обзоре мы обсуждаем проблему существования постнатального неооогенеза у представителей этого класса позвоночных.

Полный текст

Доступ закрыт

Об авторах

Юлия Андреевна Шалутина

Санкт-Петербургский государственный университет

Email: svetlana.galkina@spbu.ru

биологический факультет, кафедра эмбриологии

Россия, Университетская наб., 7/9, Санкт-Петербург, 199034

О. Д. Такки

Санкт-Петербургский государственный университет

Email: svetlana.galkina@spbu.ru

биологический факультет, кафедра эмбриологии

Россия, Университетская наб., 7/9, Санкт-Петербург, 199034

М. М. Кулак

Санкт-Петербургский государственный университет

Email: svetlana.galkina@spbu.ru

биологический факультет, кафедра эмбриологии

Россия, Университетская наб., 7/9, Санкт-Петербург, 199034

Е. Р. Гагинская

Санкт-Петербургский государственный университет

Email: svetlana.galkina@spbu.ru

биологический факультет, кафедра эмбриологии

Россия, Университетская наб., 7/9, Санкт-Петербург, 199034

Светлана Анатольевна Галкина

Санкт-Петербургский государственный университет

Автор, ответственный за переписку.
Email: svetlana.galkina@spbu.ru

биологический факультет, кафедра эмбриологии

Россия, Университетская наб., 7/9, Санкт-Петербург, 199034

Список литературы

  1. Гагинская Е.Р., Чинь С.Х. Особенности оогенеза цыпленка. II. Фолликулярный период в развитии ооцитов // Онтогенез. 1980. Т. 11. С. 213–221.
  2. Давидьян А.Г., Кошель Е.И., Лаврова О.Б. и др. Функциональные особенности ядрышкового организатора в растущих ооцитах неполовозрелых самок птиц // Онтогенез. 2017. Т. 48. № 3. С. 1–8. https://doi.org/10.7868/S047514501703003X
  3. Давидьян А.Г., Кошель Е.И., Галкина С.А. и др. Функционирование ядрышкового организатора в растущих ооцитах кур: Ревизия существующих представлений // Онтогенез. 2023. Т. 54. № 1. С. 18–26. https://doi.org/10.31857/S0475145023010032
  4. Москалев А.В., Рудой А.С., Апчел А.В. и др. Особенности биологии трансформирующего ростового фактора β и иммунопатология // Вестник Российской Военно-медицинской академии. 2016. T. 2. № 54. С. 206–216.
  5. Чинь С.Х., Калинина E.И., Гагинская Е.Р. Особенности оогенеза цыпленка. I. Экстрафолликулярный период в развитии ооцитов // Онтогенез. 1979. Т. 10. № 4. С. 340–349.
  6. Alberico H., Fleischmann, Z., Bobbitt T. et al. Workflow optimization for identification of female germline or oogonial stem cells in human ovarian cortex using single-cell RNA sequence analysis // Stem Cells. 2022. V. 40. № 5. P. 523–536. https://doi.org/10.1093/stmcls/sxac015
  7. Anastassova-Kristeva M. Histochemical and autoradiographic investigation on the nucleolus in chicken ovopoesis // Ann. Histochem. 1976. V. 21. № 1. P. 35–40.
  8. Apperson K.D., Bird K.E., Cherian G. et al. Histology of the ovary of the laying hen (Gallus domesticus) // Vet. Sc. 2017. V. 4. № 4. P. 66. https://doi.org/10.3390/vetsci4040066
  9. Bellairs R., Osmond M. Atlas of Chick Development. London: Elsevier Academy Press. 2005. 476 p.
  10. Bhartiya D., Patel H. Ovarian stem cells — resolving controversies // J. Assist. Reprod. Genet. 2018. V. 35. P. 393–398. https://doi.org/10.1007/s10815-017-1080-6
  11. Brambell R.F.W. The Oogenesis of the Fowl (Gallus bankiva) // Philos. Trans. Roy. Soc. Lond. 1925. V. 214. P. 113–151.
  12. Brieño-Enríquez M.A., Faykoo-Martinez M., Goben M. et al. Postnatal oogenesis leads to an exceptionally large ovarian reserve in naked mole-rats // Nat. Commun. 2023. V. 14. № 1. P. 670. https://doi.org/10.1038/s41467-023-36284-8
  13. Bukovsky A, Caudle M.R., Gupta S.K. et al. Mammalian neooogenesis and expression of meiosis-specific protein SCP3 in adult human and monkey ovaries // Cell Cycle. 2008. V. 7. P. 683–686. https://doi.org/10. 4161/CC.7.5.5453
  14. Butler H. The reproductive biology of a Strepsirhine (Galago senegalensis senegalensis) // Int. Rev. Gen. Exptl. Zool. 1964. V. 1. P. 241–296. https://doi.org/10.1016/B978-1-4831-9977-1.50012-2
  15. Callebaut M. The constituent oocytal layers of the avian germ and the origin of the primordial germ cell yolk // Arch. Anat. Microsc. Morphol. Exp. 1983. V. 72. № 3. P. 199–214.
  16. Chen Y.C., Lin, S.P., Chang, Y.Y. et al. In vitro culture and characterization of duck primordial germ cells // Poult. Sci. 2019. V. 98. № 4. P. 1820–1832. https://doi.org/10.3382/ps/pey515
  17. D’Costa S., Petitte J.N. Characterization of stage-specific embryonic antigen-1 (SSEA-1) expression during early development of the turkey embryo // Int. J. Dev. Biol. 1999. V. 43. № 4. P. 349–356.
  18. de Melo Bernardo A., Sprenkels K., Rodrigues G. et al. Chicken primordial germ cells use the anterior vitelline veins to enter the embryonic circulation // Biol. Open. 2012. V. 1. № 11. P. 1146–1152. https://doi.org/10.1242/bio.20122592
  19. de Melo Bernardo A, Heeren A.M, van Iperen L. et al. Meiotic wave adds extra asymmetry to the development of female chicken gonads // Mol. Reprod. Dev. 2015. V. 82. № 10. P. 774–786. https://doi.org/10.1002/mrd.22516
  20. d’Hollander F. Recherches sur 1’ovogenèse et sur la structure et la signification du noyau vitellin de Balbiani chez les oiseaux // Arch. Anat. Microsc. 1904. V. 7. № 1. P. 117
  21. de Souza G.B., Costa J.J.N., da Cunha E.V. et al. Bovine ovarian stem cells differentiate into germ cells and oocyte‐like structures after culture in vitro // Reprod. Domest. Anim. 2017. V. 52. № 2. P. 243–250. https://doi.org/10.1111/rda.12886
  22. Donovan P.J. Growth factor regulation of mouse primordial germ cell development // Curr. Top. Dev. Biol. 1994. V. 29. P. 189–225. https://doi.org/10.1016/s0070-2153(08)60551-7
  23. Dunlop C.E., Bayne R.A., McLaughlin M. et al. Isolation, purification, and culture of oogonial stem cells from adult human and bovine ovarian cortex // The Lancet. 2014. V. 383. P. S45. https://doi.org/10.1016/S0140-6736(14)60308-1
  24. Erler P., Sweeney A., Monaghan J.R. Regulation of injury-induced ovarian regeneration by activation of oogonial stem cells // Stem Cells. 2017. V. 35. № 1. P. 236–247. https://doi.org/10.1002/stem.2504
  25. Extavour C.G., Akam M. Mechanisms of germ cell specification across the metazoans: epigenesis and preformation // Development. 2003. V. 130. № 24. P. 5869–5884. https://doi.org/10.1242/dev.00804
  26. Eyal-Giladi H., Kochav S. From cleavage to primitive streak formation: a complementary normal table and a new look at the first stages of the development of the chick // Dev. Biol. 1976. V. 49. № 2. P. 321–337. https://doi.org/10.1016/0012-1606(76)90178-0
  27. Eyal-Giladi H. The gradual establishment of cell commitments during the early stages of chick development // Cell Differ. 1984. V. 14. № 4. P. 245–255. https://doi.org/10.1016/0045-6039(84)90013-7
  28. Gerard P. Contribution à l’étude de l’ovaire des Mammiferes: L’ovarie de Galago sambicus young // Archs. Biol. 1920. V. 30. P. 357–391.
  29. Gerard P. Etude sur l’ovogenèse et l’ontogenèse chez les Lemuriens du genre Galago // Archs. Biol. 1932. V. 43. P. 93–151.
  30. Gerard P., Herlant H. Sur la persistance de phénomènes d’oogenèse chez les Lemuriens adultes // Archs. Biol. 1953. V. 64. P. 97–111.
  31. González-Morán M.G. Histological and stereological changes in growing and regressing chicken ovaries during development // Anat. Rec. (Hoboken). 2011. V. 294. № 5. P. 893–904. https://doi.org/10.1002/ar.21364
  32. Gosden R.G. Germline stem cells in the postnatal ovary: is the ovary more like a testis? // Hum. Reprod. Update. 2004. V. 10. № 3. P. 193–195. https://doi.org/10.1093/humupd/dmh023
  33. Guo C.Q., Liu G., Zhao D. et al. Interaction of follicle-stimulating hormone and stem cell factor to promote primordial follicle assembly in the chicken // Front. Endocrinol. 2019. V. 10. P. 91. https://doi.org/10.3389/fendo.2019.00091
  34. Guraya S.S. Ovarian follicles in reptiles and birds. Michigan: Springer-Verlag, 1989. 285 p. https://doi.org/10.1007/978-3-642-83628-2_2
  35. Hall G.B., Long J.A., Wood B.J. et al. Germ cell dynamics during nest breakdown and formation of the primordial follicle pool in the domestic turkey (Meleagris gallopavo) // Poult. Sci. 2020. V. 99. № 5. P. 2746–2756. https://doi.org/10.1016/j.psj.2019.12.050
  36. Hansen C.L., Pelegri F. Primordial germ cell specification in vertebrate embryos: phylogenetic distribution and conserved molecular features of preformation and induction // Front. Cell Dev. Biol. 2021. V. 9. № 1. P. 730332. https://doi.org/10.3389/fcell.2021.730332
  37. He B., Lin J., Li J. et al. Basic fibroblast growth factor suppresses meiosis and promotes mitosis of ovarian germ cells in embryonic chickens // Gen. Comp. Endocrinol. 2012. V. 176. № 2. P. 173–181. https://doi.org/10.1016/j.ygcen.2012.01.012
  38. Herlant M. L’active génitale chez la femelle de Galago senegalensis mohli (Geoffr.) et ses rapports avec la persistance de phénomènes d’ovogenèse chez l’adulte // Ann. Soc. R. Zool. Belg. 1961. V. 91. P. 1–15.
  39. Horan C., Williams S. Oocyte stem cells: fact or fantasy? // Reproduction. 2017. V. 154. № 1. P. R23–R35. https://doi.org/10.1530/REP-17-0008
  40. Hou L., Wang J., Li X. et al. Characteristics of female germline stem cells from porcine ovaries at sexual maturity // Cell Transplant. 2018. V. 27. № 8. P. 1195–1202. https://doi.org/10.1177/0963689718784878
  41. Hughes G.C. The population of germ cells in the developing female chick // J. Embryol. Exp. Morph. 1963. V. 11 P. 513–536
  42. Hutt F.B., Grussendorf D.T. On the fecundity of partially ovariotomized fowls // J. Exp. Zool. 1933. V. 65. P. 199–214. https://doi.org/10.1002/jez.1400650203
  43. Hurley L.L., Crino O.L., Rowe M. et al. Variation in female reproductive tract morphology across the reproductive cycle in the zebra finch // Peer J. 2020. V. 8. P. e10195. https://doi.org/10.7717/peerj.10195
  44. Idahor K.O., Bozkurt Y., Bucak M.N. Avian Reproduction // Animal Reproduction. In Bozkurt Y., Bucak M. N., Payan-Carreira R. (Eds.) London: Intech. Open. 2021. P. 123–124. https://doi.org/10.5772/intechopen.101185
  45. Iikawa H., Nishina A., Morita M. et al. Labeling and sorting of avian primordial germ cells utilizing Lycopersicon esculentum lectin // Dev. Growth Differ. 2024. V. 66. № 9. P. 452–461. https://doi.org/10.1111/dgd.12948
  46. Ioannou J.M. Oogenesis in adult prosimians // Development. 1967. V. 17. № 1. P. 139–145.
  47. Jacob M., Bakst M.R. Developmental anatomy of the female reproductive tract // Reproductive Biology and Phylogeny of Birds. In Barrie G.M.J. (Eds.). Boca Raton: CRC Press, 2007. V. 6. P. 149–180.
  48. Johnson J., Canning J., Kaneko T. et al. Germline stem cells and follicular renewal in the postnatal mammalian ovary // Nature. 2004. V. 428. P. 145–150. https://doi.org/10.1038/nature02316
  49. Jung K.M., Kim Y.M., Keyte A.L. et al. Identification and characterization of primordial germ cells in a vocal learning Neoaves species, the zebra finch // FASEB J. 2019. V. 33. № 12. P. 13825–13836. https://doi.org/10.1096/fj.201900760RR
  50. Kim Y.M., Han J.Y. The early development of germ cells in chicken // Int. J. Dev. Biol. 2018. V. 62. № 1–2–3. P. 145–152. https://doi.org/10.1387/ijdb.170283jh
  51. Kinsky F.C. The consistent presence of paired ovaries in the Kiwi (Apteryx) with some discussion of this condition in other birds // J. Ornithol. 1971. V. 112. P. 334–357.
  52. Klein S., Dosch R., Altgilbers S. et al. Identification of chicken LOC420478 as Bucky ball equivalent and potential germ plasm organizer in birds // Sci. Rep. 2022. V. 12. № 1. P. 16858. https://doi.org/10.1038/s41598-022-21239-8.
  53. Klein S., Dosch R., Reiche S. et al. Dynamic maternal synthesis and segregation of the germ plasm organizer, Bucky ball, in chicken oocytes and follicles // Sci. Rep. 2024. V. 14. № 1. P. 27753. https://doi.org/10.1038/s41598-024-78544-7
  54. Kopp F., Stahl A. Évolution de la lignée germinale dans la médullaire ovarienne du poulet // C. R. Seance. Soc. Biol. 1975. V. 169. № 5. P. 1240–1244.
  55. Kumar T.C.A. Oogenesis in Lorises; Loris tardigradus lydekkerianus and Nycticebus coucang // Proc. Biol. Sci. 1968. V. 169. № 1015. P. 167–176. https://doi.org/10.1098/rspb.1968.0004
  56. Law A.S., Burt D.W., Armstrong D.G. Expression of Transforming Growth Factor-β mRNA in Chicken Ovarian Follicular Tissue // Gen. Comp. Endocr. 1995. V. 98. № 3. P. 227–233. https://doi.org/10.1006/gcen.1995.1064
  57. Lee H.C., Choi H.J., Lee H.G. et al. DAZL Expression explains origin and central formation of primordial germ cells in chickens // Stem Cells Dev. 2016. V. 25. № 1. P. 68–79. https://doi.org/10.1089/scd.2015.0208
  58. Li X., Yao X., Mu C. et al. Serum-and feeder-free culture of juvenile monkey female germline stem cells and testosterone regulation of their self-renewal // Stem Cell Rev. Rep. 2022. V. 18. № 1. P. 336–345. https://doi.org/10.1007/s12015-021-10278-9
  59. Liu J., Elsasser T.H., Long J.A. Microscopic morphology and apoptosis of ovarian tissue after cryopreservation using a vitrification method in post-hatching turkey poults, Meleagris gallopavo // J. Poult. Sci. 2017. V. 54. № 4. P. 303–311. https://doi.org/10.2141/jpsa.0170033
  60. Macdonald J., Glover J.D., Taylor L. et al. Characterisation and Germline Transmission of Cultured Avian Primordial Germ Cells // PLoS ONE. 2010. V. 5. № 11. P. e15518. https://doi.org/10.1371/journal.pone.0015518
  61. Madekurozwa M.C. An immunohistochemical study of ovarian follicle histogenesis in the early post-hatch Japanese quail (Coturnix coturnix japonica) // Anat. Histol. Embryol. 2012. V. 41. № 2. P. 79–86. https://doi.org/10.1111/j.1439-0264.2011.01105.x
  62. Mandl A.M., Zuckerman S. Numbers of normal and atretic oocytes in unilaterally spayed rats // J. Endocrinol. 1951a. V. 7. № 2. P. 112–119. https://doi.org/10.1677/joe.0.0070112
  63. Mandl A.M., Zuckerman S. The relation of age to numbers of oocytes // J. Endocrinol. 1951b. V. 7. № 2. P. 190–193. https://doi.org/10.1677/joe.0.0070190
  64. Méndez-Herrera M.C., Tamez L., Cándido A. et al. Follicle stimulating hormone increases somatic and germ cell number in the ovary during chick embryo development // Gen. Comp. Endocrinol. 1998. V. 111. № 2. P. 207–215. https://doi.org/10.1006/gcen.1998.7108
  65. Meng L., Zhang Y., Hua Y. et al. Identification of oogonial stem cells in chicken ovary // Cell Prolif. 2023. V. 56 № 3. P. e13371. https://doi.org/10.1111/cpr.13371
  66. Mfoundou J.D.L, Guo Y.J., Liu M.M. et al. The morphological and histological study of chicken left ovary during growth and development among Hy-line brown layers of different ages // Poult. Sci. 2021. V. 100. № 8. P. 101191. https://doi.org/10.1016/j.psj.2021.101191
  67. Mira A. Why is meiosis arrested? // J. Theor. Biol. 1998. V. 194. № 2. P. 275–287. https://doi.org/10.1006/jtbi.1998.0761
  68. Mizushima S., Ogawa Y., Kuroiwa A. Initial formation of and sex differences in primordial germ cells in Japanese quail // Reprod. Biol. 2024. V. 24. № 3. P. 100922. https://doi.org/10.1016/j.repbio.2024.100922
  69. Mohammadi H., Ansari-Pirsaraei Z. Follicle diameters, egg weight, and egg production performance in old laying hens injected with growth hormone and testosterone // J. Agr. Sci. Tech. 2016. V. 18. P. 949–959.
  70. Morales-Sánchez E., Campuzano-Caballero J.C., Cervantes A. et al. Which side of the coin are you on regarding possible postnatal oogenesis? // Arch. Med. Res. 2024. V. 55. № 8. P. 103071. https://doi.org/10.1016/j.arcmed.2024.103071
  71. Motono M., Ohashi T., Nishijima K. et al. Analysis of chicken primordial germ cells // Cytotechnology. 2008. V. 57. № 2. P. 199–205. https://doi.org/10.1007/s10616-008-9156-x
  72. Nakamura S., Kobayashi K., Nishimura T. et al. Identification of germline stem cells in the ovary of the teleost medaka // Science. 2010. V. 328. № 5985. P. 1561–1563. https://doi.org/10.1126/science.1185473
  73. Nakamura Y. Poultry genetic resource conservation using primordial germ cells // J. Reprod. Dev. 2016. V. 62. № 5. P. 431–437. https://doi.org/10.1262/jrd.2016-052
  74. Narbaitz R., Belanger LF. Action of acetazolamide on the chick embryo during late development // Can. J. Physiol. Pharmacol. 1975. V. 53. № 3. P. 397–402. https://doi.org/10.1139/y75-057
  75. Nguyen H.H., Bui L.Q., Uyen N.N. P. et al. Isolation of female germline stem cells from porcine ovarian tissue and differentiation into oocyte-like cells // J. Reprod. Dev. 2019. V. 65. № 5. P. 423–432. https://doi.org/10.1016/j.theriogenology.2022.12.004
  76. Pacchiarotti J., Maki C., Ramos T. et al. Differentiation potential of germ line stem cells derived from the postnatal mouse ovary // Differentiation. 2010. V. 79. № 3. P. 159–170. https://doi.org/10.1016/j.diff.2010.01.001
  77. Paster M. Avian reproductive endocrinology // Vet. Clin. North. Am. Small Anim. Pract. 1991. V. 6. P. 1343–59. https://doi.org/10.1016/s0195-5616(91)50143-1
  78. Pearl R., Schoppe W.F. Studies on the physiology of reproduction in the domestic fowl // J. Exp. Zool. 1921. V. 34. № 1. P. 101–118. https://doi.org/10.1002/jez.1400340107
  79. Petitte J.N., Clark M.E., Liu G. et al. Production of somatic and germline chimeras in the chicken by transfer of early blastodermal cells // Development. 1990. V. 108. № 1. P. 185–189. https://doi.org/10.1242/dev.108.1.185
  80. Petter-Rousseaux A. Recherches sur la biologie de la reproduction des primates inférieurs // Mammalia. 1962. V. 26. № 1. P. 1–88.
  81. Petter-Rousseaux A., Bourlière F. Persistence des phénomenes d’ovogenèse chez l’adulte de Daubentonia madagascariensis (Prosimii, Lemuriformes) // Folia Primatol. 1965. V. 3. № 4. P. 241–244.
  82. Ramaswami L.S., Anand Kumar T.C. Some aspects of reproduction of the female slender loris, Loris tardigradus lydekkerianus Cabr // Acta. Zool. 1965. V. 46. P. 257–263.
  83. Rao N.C.R. On the structure of the ovary and the ovarian ovum of Loris lydekkerianus, Cabr // J. Cell Sci. 1927. V. 2. № 281. P. 57–74. https://doi.org/10.1242/jcs.s2-71.281.57
  84. Raz E. The function and regulation of vasa-like genes in germ-cell development // Genome biol. 2000. V. 1. № 3. P. reviews 1017. https://doi.org/10.1186/gb-2000-1-3-reviews1017
  85. Rengaraj D., Han J.Y. Female germ cell development in chickens and humans: the chicken oocyte enriched genes convergent and divergent with the human oocyte // Int. J. Mol. Sci. 2022. V. 23. № 19. P. 11412. https://doi.org/10.3390/ijms231911412
  86. Silvestris E., Cafforio P., Felici C. et al. Ddx4+ oogonial stem cells in postmenopausal women’s ovaries: a controversial, undefined role // Cells. 2019. V. 8. № 7. P. 650. https://doi.org/10.3390/cells8070650
  87. Skalko R.G., Kerrigan J.M., Ruby J.R. et al. Intercellular bridges between oocytes in the chicken ovary. // Z. Zellforsch. Mikrosk. Anat. 1972. V. 128. № 1. P. 31–41. https://doi.org/10.1007/BF00306886
  88. Smith C.A., Roeszler K.N., Bowles J. et al. Onset of meiosis in the chicken embryo; evidence of a role for retinoic acid // BMC Dev. Biol. 2008. V. 8. P. 85. https://doi.org/10.1186/1471-213X-8-85
  89. Solter D., Knowles B.B. Monoclonal antibody defining a stage-specific mouse embryonic antigen (SSEA-1). Proc. Natl Acad. Sci. USA. 1978. V. 75. № 11. P. 5565–5569. https://doi.org/10.1073/pnas.75.11.5565
  90. Swift C.H. Origin of the definitive sex-cells in the female chick and the relation to the primordial germ cells // Am. J. Anat. 1915. V. 18. P. 441–470.
  91. Tagami T., Kagami H. Developmental origin of avian primordial germ cells and its unique differentiation in the gonads of mixed-sex chimeras // Mol. Reprod. Dev. 1998. V. 50. № 3. P. 370–376. https://doi.org/10.1002/(SICI)1098-2795(199807) 50:3<370::AID-MRD14>3.0.CO;2-8
  92. Tagami T., Miyahara D., Nakamura Y. Avian primordial germ cells // Adv. Exp. Med. Biol. 2017. V. 1001. № 1. P. 1–18. https://doi.org/10.1007/978-981-10-3975-1_
  93. Tsai T.S., Johnson J., White Y. et al. The molecular characterization of porcine egg precursor cells // Oncotarget. 2017. V. 8. № 38. P. 63484–63505. https://doi.org/10.18632/oncotarget.18833
  94. Tsunekawa N., Naito M., Sakai Y. et al. Isolation of chicken vasa homolog gene and tracing the origin of primordial germ cells // Development. 2000. V. 127. № 12. P. 2741–2750. https://doi.org/10.1242/dev.127.12.2741
  95. Ukeshima A., Fujimoto T. A fine morphological study of germ cells in asymmetrically developing right and left ovaries of the chick // Anat. Rec. 1991. V. 230. № 3. P. 378–386. https://doi.org/10.1002/ar.1092300311
  96. Waldeyer-Hartz H.W.G. Eierstock und Ei: ein Beitrag zur Anatomie und Entwicklungsgeschichte der Sexualorgane. Leipzig: Wilhelm Engelmann, 1870. 174 p.
  97. Wagner M., Yoshihara M., Douagi I. et al. Single-cell analysis of human ovarian cortex identifies distinct cell populations but no oogonial stem cells // Nat. Commun. 2020. V. 11. № 1. P. 1147. https://doi.org/10.1038/s41467-020-14936-3
  98. White Y., Woods D., Takai Y. et al. Oocyte formation by mitotically active germ cells purified from ovaries of reproductive-age women // Nat. Med. 2012. V. 18. P. 413–421. https://doi.org/10.1038/nm.2669
  99. Woods D.C., Tilly J.L. An evolutionary perspective on adult female germline stem cell function from flies to humans // Semin. Reprod. Med. 2013. V. 31. № 1. P. 24–32. https://doi.org/10.1055/s-0032-1331794
  100. Wu M., Lu Z., Zhu Q. et al. DDX04+ stem cells in the ovaries of postmenopausal women: existence and differentiation potential // Stem Cells. 2022. V. 40. № 1. P. 88–101. https://doi.org/10.1093/stmcls/sxab002u
  101. Xu H., Zhu X., Li W. et al. Isolation and in vitro culture of ovarian stem cells in chinese soft-shell turtle (Pelodiscus sinensis) // J. Cell Biochem. 2018. V. 119. № 9. P. 7667–7677. https://doi.org/10.1002/jcb.27114
  102. Yang S.Y., Lee H.J., Lee H.C. et al. The dynamic development of germ cells during chicken embryogenesis // Poultry Sci. 2018. V. 97. № 2. P. 650–657. https://doi.org/10.3382/ps/pex316
  103. Yoshihara M., Wagner M., Damdimopoulos A., et al. The continued absence of functional germline stem cells in adult ovaries // Stem Cells. 2023. V. 41. № 2. P. 105–110. https://doi.org/10.1093/stmcls/sxac070
  104. Zhang H., Zheng W., Shen Y. et al. Experimental evidence showing that no mitotically active female germline progenitors exist in postnatal mouse ovaries // Proc. Natl. Acad. Sci. USA. 2012. V. 109. № 31. P. 12580–12585. https://doi.org/10.1073/pnas.1206600109
  105. Zhang Y., Wu W., Ma Y. et al. TGFB1 stimulates the proliferation of quiescent oogonial stem cells in chicken // Reproduction. 2024. V. 168. № 1. P. 230405. https://doi.org/10.1530/REP-23–0405
  106. Zhou L., Wang L., Kang J.X. et al. Production of fat‐1 transgenic rats using a post‐natal female germline stem cell line // Mol. Hum. Reprod. 2014. V. 20. № 3. P. 271–281. https://doi.org/10.1093/molehr/gat081
  107. Zhou S., Zhao D., Liu S. et al. TGF‐β1 sustains germ cell cyst reservoir via restraining follicle formation in the chicken // Cell. Biol. Intern. 2020. V. 44. № 3. P. 861–72.
  108. Zou K., Yuan Z., Yang Z. et al. Production of offspring from a germline stem cell line derived from neonatal ovaries // Nat. Cell Biol. 2009. V. 11. № 5. P. 631–636. https://doi.org/10.1038/ncb1869

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Иммуногистохимическое выявление белка SSEA-1, маркера первичных половых клеток, в яичнике половозрелой особи (6 месяцев) зебровой амадины. Клетки, положительные по маркеру SSEA-1, обведены рамками. Масштабная линия — 50 мкм на препарате.

Скачать (246KB)

© Российская академия наук, 2025