Simulation of silicon conical field effect GAA nanotransistors with stack SiO2/HfO2 dielectric of gate

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The issues of modeling the electrophysical characteristics of a silicon conical field effect GAA nanotransistor are discussed. An analytical model of the drain current of a transistor with a fully enclosing conical gate with a stack sub-gate oxide SiO2/HfO2 has been developed, taking into account the effect of the charge of the interphase trap at the Si/SiO2 interface. To simulate the potential distribution in a conical working area under the condition of constant trap density, an analytical solution of the Poisson equation was obtained using the method of parabolic approximation in a cylindrical coordinate system with appropriate boundary conditions. The potential model was used to develop an expression for the GAA drain current of a nanotransistor with a stack gate oxide. The key electrophysical characteristics are numerically investigated depending on the density of traps and the thicknesses of SiO2 and HfO2 layers.

About the authors

N. V. Masalsky

Federal Research Center Scientific Research Institute for System Research, Russian Academy of Sciences Academy

Author for correspondence.
Email: volkov@niisi.ras.ru
Russian Federation, Moscow

References

  1. Usha C., Vimala P. Analytical drain current model for fully depleted surrounding gate TFET // J. Nano Res. 2018. V. 55. P. 75—81. https://doi.org/10.4028/www.scientific.net/JNanoR.55.75
  2. Nanoelectronics: Devices, Circuits and Systems. Editor by Brajesh Kumar Kaushik. Elsevier. 476, 2018. ISBN: 9780128133545.
  3. Tomar G., Barwari A. Fundamental of Electronic Devices and Circuits. Springer. 2019. ISBN: 9789811502668. 224 p.
  4. Colinge J.P. FinFETs and Other Multi-Gate Transistor. Springer-Verlag. New York 2008. ISBN: 9780387717517. 339 р.
  5. Ferain I., Colinge C.A., Colinge J. Multigate transistors as the future of classical metal—oxide—semiconductor field-effect transistors // Nature. 2011. V. 479. P. 310—316. https://doi.org/10.1038/nature10676
  6. International Technology Roadmap for Semiconductors (ITRS) Interconnect, 2020 Edition. [Online] Available: https://irds.ieee.org/editions/2020 (Accessed on December 12, 2022).
  7. Kumar S., Goel E., Singh K., Singh B., Kumar M., Jit S. A compact 2D analytical model for electrical characteristics of double-gate tunnel field-effect transistors with a SiO2/high-k stacked gate-oxide structure // IEEE Trans. Electron Devices. 2016. V. 63. P. 3291—3330. https://doi.org/10.1109/TED.2016.2572610
  8. Masalsky N.V. Modeling silicon sylindrical CMOS nanotransistors with a fully enclosed variable-radius gate // Russian Microelectronics. 2022. V. 51. P. 220—225. https://doi.org/ 10.1134/S1063739722040084
  9. Koswatta S.O., Lundstrom M.S., Nikonov D.E. Performance comparison between pin tunneling transistors and conventional MOSFETs // IEEE Trans. Electron. Dev. 2009. V. 56. P. 456—463. https://doi.org/10.1109/TED.2008.2011934
  10. Yu Y.S., Cho N., Hwang S.W., Ahn D. Analytical threshold voltage model including effective conducting path effect (ECPE) for surrounding-gate MOSFETs (SGMOSFETs) with localized charges // IEEE Trans. Electron. Dev. 2010. V. 57. P. 3176—3180. https://doi.org/10.1109/TED.2010.2066278
  11. Abdi D.B., Kumar M.J. 2-D threshold voltage model for the double-gate pnpn TFET with localized charges // IEEE Trans. Electron. Dev. 2016. V. 63. P. 3663—3668. https://doi.org/10.1109/TED.2016.2589927
  12. Grasser T. (ed.). Bias Temperature Instability for Devices and Circuits. Springer Science + Business Media, New York/ 2014. ISBN: 9781461479086. 810 p.
  13. Sahay S., Kumar M. Junctionless Field-Effect Transistors: Design, Modeling, and Simulation. IEEE Press, Wiley, 2019. ISBN: 9781119523536. 496 p.
  14. Lundstrom M., Guo J. Nanoscale Transistors: Device Physics, Modeling and Simulation. Springer, New York, 2006. ISBN 9780387280028. 218p.
  15. Schwierz F., Wong H., Liou J.J. Nanometer CMOS. Pan Stanford Publishing. Singapore, 2010. ISBN: 9789814241083. 350p.
  16. Sano N. Physical issues in device modeling: Length-scale, disorder, and phase interference // In 2017 International Conference on Simulation of Semiconductor Processes and Devices, Sept. 2017. Р. 1—4. https://doi.org/10.23919/SISPAD.2017.8085249
  17. Fischetti M.V., Vandenberghe W.G. Advanced Physics of Electron Transport in Semiconductors and Nanostructures. Springer. USA, 2016. ISBN 9783319011004. 474 p.
  18. Reggiani S., Barone G., Poli S., Gnani E., Gnudi A., Baccarani G., Chuang M.-Y., Tian W., Wise R. TCAD simulation of hot-carrier and thermal degradation in STI-LDMOS transistors // IEEE Trans. Electron Devices. 2013. V. 60. P. 691—698. https://doi.org/10.1109/TED.2012.2227321
  19. Young K.K. Analysis of conduction in fully depleted SOI MOSFETs // IEEE Trans. Electron Devices. 1989. V. 36. P. 504—506. https://doi.org/10.1109/16.19960.
  20. Bardon M.G., Neves H.P., Puers R., Van Hoof C. Pseudo-two-dimensional model for double-gate tunnel FETs considering the junctions depletion regions // IEEE Trans. Electron Devices. 2010. V. 57. P. 827—834. https://doi.org/10.1109/TED.2010.2040661
  21. Chiang T.K., Chen M.L. A new analytical threshold voltage model for symmetrical double-gate MOSFETs with high-k gate dielectrics // Solid-State Electron. 2007. V. 51. P. 387—393. https://doi.org/10.1016/j.sse.2007.01.026
  22. He J., Chan M., Zhang X., Wang Y. A carrier-based analytic DVIC model for long channel undoped cylindrical surrounding-gate MOSFETs // Solid State Electron. 2006. V. 50. P. 416—421. https://doi.org/10.1016/j.sse.2006.01.015
  23. Sze S.M. Physics of Semiconductor Device (2nd edn) // John Wiley and Sons Ltd, USA, 1981. ISBN: 978-0471098379. 868p.
  24. Karthigai Pandian M., Balamurugan N.B. Analytical threshold voltage modeling of surrounding gate silicon nanowire transistors with different geometries // J. Electric Eng. Technol. 2014. V. 9. No. 6. P. 2079—2088. https://doi.org/10.5370/JEEET.2014.9.6.2079
  25. Chiang T-K. A new quasi-3-D compact threshold voltage model for Pi-gate MOSFETs with the interface trapped charges // IEEE Transactions on Nanotechnology. 2015. V. 14. P. 555—560. https://doi.org/10.1109/TNANO.2015.2416198
  26. Auth C.P., Plummer J.D. Scaling theory for cylindrical, fully-depleted, surrounding-gate MOSFETs // IEEE Trans. on Electron Devices. 1997. V. 18. P. 74—76. https://doi.org/10.1109/55.553049
  27. Masal’skii N.V. Modeling the CMOS characteristics of a completely depleted surrounding-gate nanotransistor and an unevenly doped working region // Russian Microelectronics. 2019. V. 48. P. 394—401. https://doi.org/10.1134/S1063739719060052
  28. Маsalsky N.V. CVC simulation of ultrathin Soi-Cmos nanotransistors with a fully enclosed gate // Russian Microelectronics. 2021. V. 50. P. 387—393. https://doi.org/10.1134/S1063739721050036.
  29. Madan J., Chaujar R. Gate drain underlapped-PNIN-GAA-TFET for comprehensively upgraded analog/RF performance // Superlattices Microstruct. 2017. V. 102. P. 17—26. https://doi.org/10.1016/j.spmi.2016.12.034

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences