Carrier Scattering Analysis in AlN/GaN HEMT Heterostructures with an Ultrathin AlN Barrier
- Authors: Gusev A.S.1, Sultanov A.O.1, Katkov A.V.1, Ryndya S.M.1, Siglovaya N.V.1, Klochkov A.N.1, Ryzhuk R.V.1, Kargin N.I.1, Borisenko D.P.1
-
Affiliations:
- National Research Nuclear University MEPhI
- Issue: Vol 53, No 3 (2024)
- Pages: 265-273
- Section: ПРИБОРЫ
- URL: https://kld-journal.fedlab.ru/0544-1269/article/view/655227
- DOI: https://doi.org/10.31857/S0544126924030086
- ID: 655227
Cite item
Abstract
Experimental AlN/GaN heterostructures (HSs) with an ultrathin AlN barrier were obtained using molecular beam epitaxy with plasma activation of nitrogen. The layer resistance of the optimized structures was less than 230 Ω/¨. The scattering processes that limit the mobility of two-dimensional electron gas in undoped AlN/GaN HSs with an ultrathin AlN barrier have been studied. It is shown that in the ns range characteristic of AlN/GaN HEMT HSs (ns > 1 × 1013 cm–2), a noticeable contribution to the scattering of charge carriers is made by the roughness of the heterointerface.
About the authors
A. S. Gusev
National Research Nuclear University MEPhI
Email: AOSultanov@mephi.ru
Russian Federation, Moscow
A. O. Sultanov
National Research Nuclear University MEPhI
Author for correspondence.
Email: AOSultanov@mephi.ru
Russian Federation, Moscow
A. V. Katkov
National Research Nuclear University MEPhI
Email: AOSultanov@mephi.ru
Russian Federation, Moscow
S. M. Ryndya
National Research Nuclear University MEPhI
Email: AOSultanov@mephi.ru
Russian Federation, Moscow
N. V. Siglovaya
National Research Nuclear University MEPhI
Email: AOSultanov@mephi.ru
Russian Federation, Moscow
A. N. Klochkov
National Research Nuclear University MEPhI
Email: AOSultanov@mephi.ru
Russian Federation, Moscow
R. V. Ryzhuk
National Research Nuclear University MEPhI
Email: AOSultanov@mephi.ru
Russian Federation, Moscow
N. I. Kargin
National Research Nuclear University MEPhI
Email: AOSultanov@mephi.ru
Russian Federation, Moscow
D. P. Borisenko
National Research Nuclear University MEPhI
Email: AOSultanov@mephi.ru
Russian Federation, Moscow
References
- Meyer D.J. et al. High Electron Velocity Submicrometer AlN/GaN MOS-HEMTs on Freestanding GaN Substrates // in IEEE Electron Device Letters. 2013. V. 34. No. 2. Р. 199—201. doi: 10.1109/LED.2012.2228463.
- Xue J.S., Zhang J.C., Hao Y. Ultrathin barrier AlN/GaN high electron mobility transistors grown at a dramatically reduced growth temperature by pulsed metal organic chemical vapor deposition // Appl. Phys. Lett. 2015. V. 107. I. 4. Article ID 043503. https://doi.org/10.1063/1.4927743
- Cao Y., Wang K., Li G., Kosel T., Xing H., Jena D. MBE growth of high conductivity single and multiple AlN/GaN heterojunctions // Journal of Crystal Growth. 2011. V. 323. I. 1. Р. 529—533. https://doi.org/10.1016/j.jcrysgro.2010.12.047
- Harrouche K., Kabouche R., Okada E. and Medjdoub F. High performance and highly robust AlN/GaN HEMTs for millimeter-wave operation // in IEEE Journal of the Electron Devices Society. 2019. V. 7. Р. 1145—1150. doi: 10.1109/JEDS.2019.2952314.
- Chang C.Y. et al. Very low sheet resistance AlN/GaN high electron mobility transistors // Proc. CS MANTECH Conference. 2009. Р. 18—21.
- Ambacher O., Smart J., Shealy J.R. et al. Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures // J. Appl. Phys. 1999. V. 85. Р. 3222—3233. https://doi.org/10.1063/1.369664
- Burnham S., Doolittle W. In situ growth regime characterization of AlN using reflection high energy electron diffraction // Journal of Vacuum Science & Technology B. 2006. V. 24. Р. 2100—2104.
- Burnham S., Namkoong G., Lee K., Doolittle W. Reproducible reflection high energy electron diffraction signatures for improvement of AlN using in situ growth regime characterization // Journal of Vacuum Science & Technology B. 2007. V. 25. Р. 1009—1013.
- Protasov D.Yu., Malin T.V., Tikhonov A.V., Tsatsulnikov A.F., Zhuravlev K.S. Scattering of 2DEG electrons in AlGaN/GaN heterostructures // Physics and technology of semiconductors. 2013. V. 47. I. 1. Р. 36—47.
- Ridley B.K., Zakhleniuk N.A. Transport in a polarization-induced 2D electron gas // Int. J. High Speed Electron. Syst. 2001. V. 11. No. 2. Р. 117—147.
- Yaita J. et al. Probing the effects of surface roughness and barrier layer thickness in InAlGaN/GaN HEMTs to improve carrier mobility // Applied Physics Express. 2021. V. 14. Article ID 031005.
- Ridley B.K., Foutrz B.E., Eastman L.F. Mobility of electrons in bulk GaN and AlxGa1–xN/GaN heterostructures // Phys. Rev. B. 1999. V. 61. No. 24. Р. 16862—16869.
- Tripathi P., Ridley B.K. Dynamics of hot-electron scattering in GaN heterostructures // Physical Review B. 2002. V. 66. Article ID 195301.
- Zanato D. et al. The effect of interface-roughness and dislocation scattering on low temperature mobility of 2D electron gas in GaN/AlGaN // Semicond. Sci. Technol. 2004. V. 19. Р. 427—432.
- Fang F.F., Howard W.E. Negative field-effect mobility on (100) Si surfaces // Phys. Rev. Lett. 1966. V. 16. No. 18. Р. 797—799.
- Jena, D., Smorchkova, Yu., Elsass, C., Gossard, A.C., and Mishra, U.K. Electron transport and intrinsic mobility limits in two-dimensional electron gases of III–V nitride heterostructures, arXiv Preprint, 2001.https://doi.org/10.48550/arXiv.cond-mat/0103461
- Lisesivdin S.B. et al. Scattering analysis of 2DEG carrier extracted by QMSA in undoped Al0.25Ga0.75N/GaN heterostructures // Semicond. Sci. Technol. 2007. V. 22. Р. 543—548.
- Davies J.H. The physics of low-dimensional semiconductors: an introduction. Cambridge University Press, 1998.
- Gelmont B.L., Shur M., Stroscio M. Polar optical-phonon scattering in three and two-dimensional electron gases // J. Appl. Phys. 1995. V. 77. Р. 657—660.
- Smorchkova I.P. et al. AlN/GaN and (Al, Ga)N/AlN/GaN two-dimensional electron gas structures grown by plasma-assisted molecular-beam epitaxy // Journal of Applied Physics. 2001. V. 90. No. 10. Р. 5196—5201. https://doi.org/10.1063/1.1412273
- Zimmermann T. et al. AlN/GaN Insulated-gate HEMTs with 2.3 A/mm output current and 480 mS/mm transconductance // IEEE Electron Device Letters. 2008. V. 29. No. 7. Р. 661—664. https://ieeexplore.ieee.org/document/4558119
- R. Gaska, J.W. Yang, A. Osinsky et al. Electron transport in AlGaN–GaN heterostructures grown on 6H-SiC substrates // Appl. Phys. Lett. 1998. V. 72. No. 6. Р. 707—709. https://doi.org/10.1063/1.120852
- Cordier Y., Portail M., Chenot S. et al. AlGaN/GaN high electron mobility transistors grown on 3C-SiC/Si(111) // Journal of Crystal Growth. 2008. V. 310. I. 20. Р. 4417—4423. https://doi.org/10.1016/j.jcrysgro.2008.07.063
- Chen Z., Pei Y., Newman S. et al. Growth of AlGaN/GaN heterojunction field effect transistors on semi-insulating GaN using an AlGaN interlayer // Appl. Phys. Lett. 2009. V. 94. Article ID 112108. https://doi.org/10.1063/1.3103210
- Chen J., Bergsten J., Lu J., Janzen E. et al. A GaN—SiC hybrid material for high-frequency and power electronics // Appl. Phys. Lett. 2018. V. 113. Article ID 041605. https://doi.org/10.1063/1.5042049
- Wu S., Ma X., Yang L. et al. A millimeter-wave AlGaN/GaN HEMT fabricated with transitional-recessed-gate technology for high-gain and high-linearity applications // IEEE Electron Device Letters. 2019. V. 40. No. 6. Р. 846—849. doi: 10.1109/LED.2019.2909770.
- Asgari A., Babanejad S., Faraone L. Electron mobility, Hall scattering factor, and sheet conductivity in AlGaN/AlN/GaN heterostructures // J. Appl. Phys. 2011. V. 110. I. 11. Article ID 113713. https://doi.org/10.1063/1.3665124
Supplementary files
