Carrier Scattering Analysis in AlN/GaN HEMT Heterostructures with an Ultrathin AlN Barrier

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Experimental AlN/GaN heterostructures (HSs) with an ultrathin AlN barrier were obtained using molecular beam epitaxy with plasma activation of nitrogen. The layer resistance of the optimized structures was less than 230 Ω/¨. The scattering processes that limit the mobility of two-dimensional electron gas in undoped AlN/GaN HSs with an ultrathin AlN barrier have been studied. It is shown that in the ns range characteristic of AlN/GaN HEMT HSs (ns > 1 × 1013 cm–2), a noticeable contribution to the scattering of charge carriers is made by the roughness of the heterointerface.

About the authors

A. S. Gusev

National Research Nuclear University MEPhI

Email: AOSultanov@mephi.ru
Russian Federation, Moscow

A. O. Sultanov

National Research Nuclear University MEPhI

Author for correspondence.
Email: AOSultanov@mephi.ru
Russian Federation, Moscow

A. V. Katkov

National Research Nuclear University MEPhI

Email: AOSultanov@mephi.ru
Russian Federation, Moscow

S. M. Ryndya

National Research Nuclear University MEPhI

Email: AOSultanov@mephi.ru
Russian Federation, Moscow

N. V. Siglovaya

National Research Nuclear University MEPhI

Email: AOSultanov@mephi.ru
Russian Federation, Moscow

A. N. Klochkov

National Research Nuclear University MEPhI

Email: AOSultanov@mephi.ru
Russian Federation, Moscow

R. V. Ryzhuk

National Research Nuclear University MEPhI

Email: AOSultanov@mephi.ru
Russian Federation, Moscow

N. I. Kargin

National Research Nuclear University MEPhI

Email: AOSultanov@mephi.ru
Russian Federation, Moscow

D. P. Borisenko

National Research Nuclear University MEPhI

Email: AOSultanov@mephi.ru
Russian Federation, Moscow

References

  1. Meyer D.J. et al. High Electron Velocity Submicrometer AlN/GaN MOS-HEMTs on Freestanding GaN Substrates // in IEEE Electron Device Letters. 2013. V. 34. No. 2. Р. 199—201. doi: 10.1109/LED.2012.2228463.
  2. Xue J.S., Zhang J.C., Hao Y. Ultrathin barrier AlN/GaN high electron mobility transistors grown at a dramatically reduced growth temperature by pulsed metal organic chemical vapor deposition // Appl. Phys. Lett. 2015. V. 107. I. 4. Article ID 043503. https://doi.org/10.1063/1.4927743
  3. Cao Y., Wang K., Li G., Kosel T., Xing H., Jena D. MBE growth of high conductivity single and multiple AlN/GaN heterojunctions // Journal of Crystal Growth. 2011. V. 323. I. 1. Р. 529—533. https://doi.org/10.1016/j.jcrysgro.2010.12.047
  4. Harrouche K., Kabouche R., Okada E. and Medjdoub F. High performance and highly robust AlN/GaN HEMTs for millimeter-wave operation // in IEEE Journal of the Electron Devices Society. 2019. V. 7. Р. 1145—1150. doi: 10.1109/JEDS.2019.2952314.
  5. Chang C.Y. et al. Very low sheet resistance AlN/GaN high electron mobility transistors // Proc. CS MANTECH Conference. 2009. Р. 18—21.
  6. Ambacher O., Smart J., Shealy J.R. et al. Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures // J. Appl. Phys. 1999. V. 85. Р. 3222—3233. https://doi.org/10.1063/1.369664
  7. Burnham S., Doolittle W. In situ growth regime characterization of AlN using reflection high energy electron diffraction // Journal of Vacuum Science & Technology B. 2006. V. 24. Р. 2100—2104.
  8. Burnham S., Namkoong G., Lee K., Doolittle W. Reproducible reflection high energy electron diffraction signatures for improvement of AlN using in situ growth regime characterization // Journal of Vacuum Science & Technology B. 2007. V. 25. Р. 1009—1013.
  9. Protasov D.Yu., Malin T.V., Tikhonov A.V., Tsatsulnikov A.F., Zhuravlev K.S. Scattering of 2DEG electrons in AlGaN/GaN heterostructures // Physics and technology of semiconductors. 2013. V. 47. I. 1. Р. 36—47.
  10. Ridley B.K., Zakhleniuk N.A. Transport in a polarization-induced 2D electron gas // Int. J. High Speed Electron. Syst. 2001. V. 11. No. 2. Р. 117—147.
  11. Yaita J. et al. Probing the effects of surface roughness and barrier layer thickness in InAlGaN/GaN HEMTs to improve carrier mobility // Applied Physics Express. 2021. V. 14. Article ID 031005.
  12. Ridley B.K., Foutrz B.E., Eastman L.F. Mobility of electrons in bulk GaN and AlxGa1–xN/GaN heterostructures // Phys. Rev. B. 1999. V. 61. No. 24. Р. 16862—16869.
  13. Tripathi P., Ridley B.K. Dynamics of hot-electron scattering in GaN heterostructures // Physical Review B. 2002. V. 66. Article ID 195301.
  14. Zanato D. et al. The effect of interface-roughness and dislocation scattering on low temperature mobility of 2D electron gas in GaN/AlGaN // Semicond. Sci. Technol. 2004. V. 19. Р. 427—432.
  15. Fang F.F., Howard W.E. Negative field-effect mobility on (100) Si surfaces // Phys. Rev. Lett. 1966. V. 16. No. 18. Р. 797—799.
  16. Jena, D., Smorchkova, Yu., Elsass, C., Gossard, A.C., and Mishra, U.K. Electron transport and intrinsic mobility limits in two-dimensional electron gases of III–V nitride heterostructures, arXiv Preprint, 2001.https://doi.org/10.48550/arXiv.cond-mat/0103461
  17. Lisesivdin S.B. et al. Scattering analysis of 2DEG carrier extracted by QMSA in undoped Al0.25Ga0.75N/GaN heterostructures // Semicond. Sci. Technol. 2007. V. 22. Р. 543—548.
  18. Davies J.H. The physics of low-dimensional semiconductors: an introduction. Cambridge University Press, 1998.
  19. Gelmont B.L., Shur M., Stroscio M. Polar optical-phonon scattering in three and two-dimensional electron gases // J. Appl. Phys. 1995. V. 77. Р. 657—660.
  20. Smorchkova I.P. et al. AlN/GaN and (Al, Ga)N/AlN/GaN two-dimensional electron gas structures grown by plasma-assisted molecular-beam epitaxy // Journal of Applied Physics. 2001. V. 90. No. 10. Р. 5196—5201. https://doi.org/10.1063/1.1412273
  21. Zimmermann T. et al. AlN/GaN Insulated-gate HEMTs with 2.3 A/mm output current and 480 mS/mm transconductance // IEEE Electron Device Letters. 2008. V. 29. No. 7. Р. 661—664. https://ieeexplore.ieee.org/document/4558119
  22. R. Gaska, J.W. Yang, A. Osinsky et al. Electron transport in AlGaN–GaN heterostructures grown on 6H-SiC substrates // Appl. Phys. Lett. 1998. V. 72. No. 6. Р. 707—709. https://doi.org/10.1063/1.120852
  23. Cordier Y., Portail M., Chenot S. et al. AlGaN/GaN high electron mobility transistors grown on 3C-SiC/Si(111) // Journal of Crystal Growth. 2008. V. 310. I. 20. Р. 4417—4423. https://doi.org/10.1016/j.jcrysgro.2008.07.063
  24. Chen Z., Pei Y., Newman S. et al. Growth of AlGaN/GaN heterojunction field effect transistors on semi-insulating GaN using an AlGaN interlayer // Appl. Phys. Lett. 2009. V. 94. Article ID 112108. https://doi.org/10.1063/1.3103210
  25. Chen J., Bergsten J., Lu J., Janzen E. et al. A GaN—SiC hybrid material for high-frequency and power electronics // Appl. Phys. Lett. 2018. V. 113. Article ID 041605. https://doi.org/10.1063/1.5042049
  26. Wu S., Ma X., Yang L. et al. A millimeter-wave AlGaN/GaN HEMT fabricated with transitional-recessed-gate technology for high-gain and high-linearity applications // IEEE Electron Device Letters. 2019. V. 40. No. 6. Р. 846—849. doi: 10.1109/LED.2019.2909770.
  27. Asgari A., Babanejad S., Faraone L. Electron mobility, Hall scattering factor, and sheet conductivity in AlGaN/AlN/GaN heterostructures // J. Appl. Phys. 2011. V. 110. I. 11. Article ID 113713. https://doi.org/10.1063/1.3665124

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences