Mathematical modeling of a microprocessor liquid cooling system

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

This work examines the efficiency of the microprocessor-cooling system and maintaining the optimal temperature of electronic components. To do this, experiments were carried out on the existing microprocessor cooling system with control of all main parameters, primarily such as temperature and coolant flow, performance and temperature of the processor. Based on the data obtained, a mathematical model was built that describes the change in microprocessor power and allows one to calculate the temperatures and speeds of coolants, as well as obtain the most effective modes for the operation of the cooling system. The obtained experimental data and mathematical model make it possible to predict the required power of the cooling system and the operating parameters of microelectronic components, which is especially important when new generations of microprocessors with the highest performance appear. The data obtained also makes it possible to calculate parameters for existing processors in order to maximize the efficiency and reliability of their operation, which is also relevant for other electronic devices, in particular microcontrollers.

全文:

受限制的访问

作者简介

А. Andreev

Russia Federal State Budgetary Educational Institution of Higher Education, Astrakhan State Technical

Email: aresut79@mail.ru
俄罗斯联邦, Astrakhan

A. Semenov

Russia Federal State Budgetary Educational Institution of Higher Education, Astrakhan State Technical

编辑信件的主要联系方式.
Email: aresut79@mail.ru
俄罗斯联邦, Astrakhan

参考

  1. Fedorovich D.S. Degradaciya centralnyh processorov v personalnyh kompyuterah / D. S. Fedorovich; nauch. ruk. S. V. Sizikov // Aktualnye problemy energetiki 2020 [Electronic resource] : materialy studencheskoj nauchno-tehnicheskoj konferencii / sost. I. N. Prokopenya. – Minsk : BNTU, 2020. – pp. 278-284.
  2. Srinivasan J. et al. The case for lifetime reliability-aware microprocessors //ACM SIGARCH Computer Architecture News. – 2004. – Т. 32. – № 2. – pp. 276.
  3. Moore G. BCramming more components onto integrated circuits,[ Electronics, vol. 38, pp. 114–117, Apr. 19, 1965.
  4. Mahajan R., Chiu C., Chrysler G. Cooling a microprocessor chip //Proceedings of the IEEE. – 2006. – Т. 94. – № 8. – pp. 1476–1486.
  5. Pehurov N.V., Nacarenus P.A. Sravnenie metodov tradicionnogo ohlazhdeniya s immersionnym metodom ohlazhdeniya sistem //Vestnik magistratury. – 2019. – № 6–2. – pp. 93.
  6. Shelehov I.Yu., Kovalenko A.E., Zaluckij A.A. Optimizaciya processa ispolzovaniya vtorichnoj teplovoj energii //The Scientific Heritage. – 2022. – № 82–1. – S. 68-70.
  7. Nemtyryova K.A. Sistemy ohlazhdeniya v PK/ Konkurs luchshih studencheskih rabot – 2021. – S. 9–12.Harun M.A., Sidik N.A.C. A review on development of liquid cooling system for central processing unit (CPU) //Journal of Advanced Research in Fluid Mechanics and Thermal Sciences. – 2020. – Т. 78. – № 2. – pp. 98-113.
  8. Harun M.A., Sidik N.A.C. A review on development of liquid cooling system for central processing unit (CPU) // Journal of Advanced Research in Fluid Mechanics and Thermal Sciences. – 2020. – Т. 78. – № 2. – С. 98–113.
  9. Gullbrand J. et al. Liquid cooling of compute system //Journal of Electronic Packaging. – 2019. – Т. 141. – №. 1. – pp. 010802.
  10. Halim N. F. C. and Sidik N.A.C. "Nanorefrigerants: A Review on Thermophysical Properties and Their Heat Transfer Performance." Journal of Advanced Research in Applied Sciences and Engineering Technology 20, No. 1 (2020): 42–50. 11.
  11. Halim N. F. C. and Sidik N.A.C. "Mixing Chamber for Preparation of Nanorefrigerant." Journal of Advanced Research in Applied Sciences and Engineering Technology 21, No. 1 (2020): 32–40.
  12. Effect of Temperature on Power-Consumption with the i7-2600K/. 2011 https://forums.anandtech.com
  13. Rybakov A.V. Razrabotka sistemy ohlazhdeniya processora personalnogo kompyutera s ispolzovaniem elementa Pelte // Dogovora № 17-1-004502 ot 19.10. 2017 g. mezhdu Fondom Prezidentskih grantov i RMPO. Proekt «Organizaciya regionalnoj seti i provedenie biznes-shkol-vystavok, napravlennyh na razvitie u shkolnikov i studentov navykov nauchnogo predprinimatelstva, sposobstvuyushih vnedreniyu ekonomicheski perspektivnyh razrabotok molodyh innovatorov». – pp. 12.
  14. Lebakin A.I., Chervenchuk V.D., Zabudskij A.I. K voprosu o prakticheskom primenenii elementov Pelte //Rol nauchno-issledovatelskoj raboty obuchayushihsya v razvitii APK. – 2019. – S. 165-173.Al-Rashed M. H. et al. Investigation on the CPU nanofluid cooling // Microelectronics Reliability. – 2016. – Т. 63. – pp. 159–165.
  15. Al-Rashed M.H. et al. Investigation on the CPU nanofluid cooling // Microelectronics Reliability. – 2016. – Т. 63. – С. 159–165.
  16. Bahiraei M., Heshmatian S. Electronics cooling with nanofluids: A critical review // Energy Conversion and Management. – 2018. – Т. 172. – С. 438–456.
  17. Qi C. et al. Experimental study on thermo-hydraulic performances of CPU cooled by nanofluids // Energy Conversion and Management. – 2017. – Т. 153. – pp. 557–565.
  18. Deng Y., Liu J. Optimization and evaluation of a high-performance liquid metal CPU cooling product //IEEE Transactions on Components, Packaging and Manufacturing Technology. – 2013. – Т. 3. – № 7. – С. 1171–1177.
  19. Sarafraz M.M. et al. On the convective thermal performance of a CPU cooler working with liquid gallium and CuO/water nanofluid: A comparative study // Applied Thermal Engineering. – 2017. – Т. 112. – pp. 1373–1381.
  20. Habibishandiz M., Saghir M.Z. A critical review of heat transfer enhancement methods in the presence of porous media, nanofluids, and microorganisms // Thermal Science and Engineering Progress. – 2022. – Т. 30. – pp. 101267.
  21. Fan F. et al. A novel thermal efficiency analysis on the thermo-hydraulic performance of nanofluids in an improved heat exchange system under adjustable magnetic field // Applied Thermal Engineering. – 2020. – Т. 179. – pp. 115688.
  22. Bukin V.G., Andreev A.I., Bukin A.V. Gidravlicheskoe soprotivlenie pri kipenii hladagentov v trubah gorizontalnyh i vertikalnyh isparitelej sudovyh holodilnyh mashin Vestnik Astrahanskogo gosudarstvennogo tehnicheskogo universiteta. Seriya: Morskaya tehnika i tehnologiya. – 2020. – № 2. – pp. 92–99. doi: 10.24143/2073-1574-2020-2-92-99.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Change in temperature of the main components and cores of the processor (a), processor power (b) and frequency (c) over time

下载 (425KB)
3. Fig. 2. A test bench for studying the cooling of a computer processor: 1 - heat exchanger on the processor, 2 - pump, 3 - rotameter, 4, 6, 12, 13 - thermocouples, 5 - shut-off valve, 7 - expansion tank, 8 - thermostat with a stirrer with a heat-electric heater and a refrigerant coil (refrigeration machine), 9 - air separation cover, 10, 11 - control valves, 14 - heater

下载 (93KB)
4. Fig. 3. Temperature change in a liquid cooling system: □ – temperature at the radiator inlet, ‒ – temperature at the radiator outlet, ° – temperature at the water block inlet, ◊ – temperature at the water block outlet, ∆ – temperature at the air inlet to the fan, × – temperature at the air outlet from the fan

下载 (117KB)
5. Fig. 4. Dependence of the processor temperature on: the temperature of the water entering the water block – a), the processor power on the temperature of the water entering the water block – b), the processor power on the processor temperature – c) at flow rates of 0.3 l/min (∆), 0.55 l/min (□), 1 l/min (°).

下载 (196KB)
6. Fig. 5. Temperature differences in the elements of the processor cooling system at different temperatures at the input and output of each element of the system.

下载 (111KB)
7. Fig. 6. Dependence of the processor temperature on the temperature of the water entering the water block – a), processor power on the temperature of the water entering the water block – b), water heating on the temperature of the water entering the water block – c), processor power on the processor temperature – d), at flow rates of 0.3 l/min (∆), 0.55 l/min (□), 1 l/min (°), 1.2 l/min (×).

下载 (209KB)
8. Fig. 7. Dependence of the processor heat exchanger characteristics on the water temperature according to experimental data a), according to data from the mathematical model b) at a flow rate of 0.3 l/min (◊), 0.6 l/min (□). 0.9 l/min (∆), 1.2 l/min (×).

下载 (129KB)
9. Fig. 8. Calculated dependence of the heat transfer coefficient on the water temperature at a flow rate of 0.3 l/min (◊), 0.6 l/min (□). 0.9 l/min (∆), 1.2 l/min (×).

下载 (66KB)

版权所有 © Russian Academy of Sciences, 2024