Gas Phase Composition and Fluorine Atom Kinetics in SF6 Plasma
- Авторлар: Myakonkikh A.V.1, Kuzmenko V.O.1, Efremov A.M.1,2, Rudenko K.V.1
-
Мекемелер:
- Valiev Institute of Physics and Technology RAS
- Molecular Electronics Research Institute (MERI)
- Шығарылым: Том 53, № 6 (2024)
- Беттер: 459-468
- Бөлім: ДИАГНОСТИКА
- URL: https://kld-journal.fedlab.ru/0544-1269/article/view/681468
- DOI: https://doi.org/10.31857/S0544126924060019
- ID: 681468
Дәйексөз келтіру
Аннотация
The model-based study of SF6 plasma composition in respect to both neutral and charged components in a wide range of electron density was carried out. The key plasma chemical processes determining steady-state densities if fluorine atoms under conditions of low- and high-density plasmas were figured out. It was shown that optimized (reduced by the exclusion of non-effective reactions) kinetic schemes provide the satisfactory agreement between modeling results and experimental data from literature sources.
Негізгі сөздер
Толық мәтін

Авторлар туралы
A. Myakonkikh
Valiev Institute of Physics and Technology RAS
Хат алмасуға жауапты Автор.
Email: miakonkikh@ftian.ru
Ресей, Moscow
V. Kuzmenko
Valiev Institute of Physics and Technology RAS
Email: miakonkikh@ftian.ru
Ресей, Moscow
A. Efremov
Valiev Institute of Physics and Technology RAS; Molecular Electronics Research Institute (MERI)
Email: miakonkikh@ftian.ru
Ресей, Moscow; Zelenograd
K. Rudenko
Valiev Institute of Physics and Technology RAS
Email: miakonkikh@ftian.ru
Ресей, Moscow
Әдебиет тізімі
- Wolf S., Tauber R. N., Silicon Processing for the VLSI Era. Volume 1. Process Technology, New York: Lattice Press, 2000. ISBN0961672161, 9780961672164
- Nojiri K. Dry etching technology for semiconductors, Tokyo: Springer International Publishing, 2015. ISBN978–3–319–10294–8
- Krasnikov G. Ya. Vozmozhnosti mikroelektronnyh tehnologii s topologicheskimi razmerami menee 5 nm // Nanoindustriya, 2020, V. 13, No. S5–1(102), pp. 13–19. https://doi.org/10.22184/1993–8578.2020.13.5s.13.19
- Seidman L. A., Formation of three-dimensional structures in the silicon carbide substrates by plasma-chemical etching // Russian Microelectronics, 2016, Vol. 45, pp. 545–558. https://doi.org/10.1134/S1063739716080138
- Osipov A. A., Aleksandrov S. E., Solov’ev Yu. V., Uvarov A. A., Osipov A. A. // Etching of SiC in Low Power Inductively-Coupled Plasma, Russian Microelectronics, 2018, Vol. 47, No. 6, pp. 427–433. https://doi.org/10.1134/S1063739719010074
- Rudenko K. V., Myakon’kikh A. V., Orlikovsky A. A., Plasma etching of poly-Si/SiO2/Si structures: Langmuir-probe and optical-emission-spectroscopy monitoring // Russian Microelectronics, 2007, Vol. 36, No 3, pp. 179–192. https://doi.org/10.1134/S1063739707030079
- Lieberman M. A., Lichtenberg A. J., Principles of plasma discharges and materials processing, New York: John Wiley & Sons Inc., 1994. ISBN9780471720010
- Kay E., Coburn J., Dilks A., Plasma chemistry of fluorocarbons as related to plasma etching and plasma polymerization // In: Veprek S., Venugopalan M. (eds) Plasma Chemistry III. Topics in Current Chemistry, vol. 94, Berlin, Heidelberg: Springer, 1980. https://doi.org/10.1007/BFb0048585
- Stoffels W. W., Stoffels E., Tachibana K., Polymerization of fluorocarbons in reactive ion etching plasmas // J. Vac. Sci. Tech. A., 1998, vol. 16, pp. 87–95. https://doi.org/10.1116/1.581016
- Standaert T.E.F.M., Hedlund C., Joseph E. A., Oehrlein G. S., Dalton T. J., Role of fluorocarbon film formation in the etching of silicon, silicon dioxide, silicon nitride, and amorphous hydrogenated silicon carbide // J. Vac. Sci. Technol. A., 2004, vol. 22, pp. 53–60. https://doi.org/10.1116/1.1626642
- Schaepkens M., Standaert T. E. F. M., Rueger N. R., Sebel P. G. M., Oehrlein G. S., Cook J. M., Study of the SiO2-to-Si3N4 etch selectivity mechanism in inductively coupled fluorocarbon plasmas and a comparison with the SiO2-to-Si mechanism // J. Vac. Sci. Technol. A., 1999, vol. 17, pp. 26–37. https://doi.org/10.1116/1.582108
- Oehrlein G. S. et al., Future of plasma etching for microelectronics: Challenges and opportunities // J. Vac. Sci. Technol. B., 2024, vol. 42, pp. 041501(1–53). https://doi.org/10.1116/6.0003579
- Dussart R., Tillocher T., Lefaucheux P., Boufnichel M., Plasma cryogenic etching of silicon: from the early days to today’s advanced technologies // J. Phys. D: Appl. Phys., 2014, vol. 47, pp. 123001(1–27). https://doi.org/10.1088/0022–3727/47/12/123001
- Rudenko M. K., Myakon’kikh A. V., Lukichev V. F., Monte Carlo Simulation of Defects of a Trench Profile in the Process of Deep Reactive Ion Etching of Silicon // Russian Microelectronics, 2019, Vol. 48, No. 3, pp. 157–166. https://doi.org/10.1134/S1063739719030090
- Kokkoris G., Panagiotopoulos A., Goodyear A., Cooke M., Gogolides E., A global model for SF6 plasmas coupling reaction kinetics in the gas phase and on the surface of the reactor walls // J. Phys. D: Appl. Phys., 2009, vol. 42, pp. 055209(1–15). https://doi.org/10.1088/0022–3727/42/5/055209
- Lallement L., Rhallabi A., Cardinaud C., Peignon-Fernandez M. C., Alves L. L., Global model and diagnostic of a low-pressure SF6/Ar inductively coupled plasmа // Plasma Sources Sci. Technol., 2009, vol. 18, pp. 025001 (1–10). https://doi.org/10.1088/0963–0252/18/2/025001
- Mao M., Wang Y. N., Bogaerts A. Numerical study of the plasma chemistry in inductively coupled SF6 and SF6/Ar plasmas used for deep silicon etching applications // J. Phys. D: Appl. Phys., 2011, vol. 44, pp. 435202(1–15). https://doi.org/10.1088/0022–3727/44/43/435202
- Yang W., Zhao S.-X., Wen D.-Q., Liu W., Liu Y.-X., Li X.-C., Wang Y.-N. F-atom kinetics in SF6/Ar inductively coupled plasmas, J. Vac. Sci. Technol. A., 2016, vol. 34, pp. 031305(1–12). https://doi.org/10.1116/1.4945003
- Ryan K. R., Plumb I. C., A model for the etching of silicon in SF6/O2 plasmas // Plasma Chem. Plasma Proc., 1990, vol. 10(2), pp. 207–229. https://doi.org/10.1007/BF01447127
- Pateau A., Rhallabi A., Fernandez M.-C., Boufni-chel M., Roqueta F., Modeling of inductively coupled plasma SF6/O2/Ar plasma discharge: Effect of O2 on the plasma kinetic properties // J. Vac. Sci. Technol. A., 2014, vol. 32, pp. 021303(1–10). https://doi.org/10.1116/1.4853675
- Christophorou L. G., Olthoff J. K., Electron interactions with SF6, J. Phys. Chem. Ref. Data, 2000, vol. 29(3), pp. 267–330. https://doi.org/10.1063/1.1288407
- Chantry P. J., A simple formula for diffusion calculations involving wall reflection and low density // J. Appl. Phys., 1987, vol. 62, pp. 1141–1148. https://doi.org/10.1063/1.339662
- Hsu C. C., Nierode M. A., Coburn J. W., Graves D. B., Comparison of model and experiment for Ar, Ar/O2 and Ar/O2/Cl2 inductively coupled plasmas // J. Phys. D: Appl. Phys., 2006, vol. 39(15), pp. 3272–3284. https://doi.org/10.1088/0022–3727/39/15/009
- Tinck S., Boullart W., Bogaerts A. Modeling Cl2/O2/Ar inductively coupled plasmas used for silicon etching: effects of SiO2 chamber wall coating // Plasma Sources Sci. Technol., 2011, vol. 20, pp. 045012(1–13). https://doi.org/10.1088/0963–0252/20/4/045012
- Lee C., Lieberman M. A., Global model of Ar, O2, Cl2, and Ar/O2 high-density plasma discharges // J. Vac. Sci. Technol. A., 1995, vol. 13, pp. 368–380. https://doi.org/10.1116/1.579366
- Efremov A., Lee J., Kwon K.-H., A comparative study of CF4, Cl2 and HBr + Ar inductively coupled plasmas for dry etching applications // Thin Solid Films, 2017, vol. 629, pp. 39–48. https://doi.org/10.1016/j.tsf.2017.03.035
- Efremov A. M., Murin D. B., Kwon K.-H., Concerning the Effect of Type of Fluorocarbon Gas on the Output Characteristics of the Reactive-Ion Etching Process // Russian Microelectronics, 2020, vol. 49, No. 3, pp. 157–165. https://doi.org/10.1134/S1063739720020031
- Lopaev D. V., Volynets A. V., Zyryanov S. M., Zotovich A. I., Rakhimov A. T. Actinometry of O, N and F atoms // J. Phys. D: Appl. Phys. 2017. V. 50. pp. 075202 (1–17). https://doi.org/10.1088/1361–6463/50/7/075202
- Donnelly V. M., Reactions of fluorine atoms with silicon, revisited, again // J. Vac. Sci. Technol. A., 2017, vol. 35, pp. 05C202(1–9). https://doi.org/10.1116/1.4983922
Қосымша файлдар
