Precise Tomography of Qudits
- 作者: Bogdanov Y.I.1, Bogdanova N.A.1, Kuznetsov Y.A.1, Koksharov K.B.1, Lukichev V.F.1
-
隶属关系:
- Valiev Institute of Physics and Technology Institute, Russian Academy of Sciences
- 期: 卷 52, 编号 3 (2023)
- 页面: 174-182
- 栏目: КВАНТОВЫЕ ТЕХНОЛОГИИ
- URL: https://kld-journal.fedlab.ru/0544-1269/article/view/655277
- DOI: https://doi.org/10.31857/S0544126923700308
- EDN: https://elibrary.ru/UDMMYA
- ID: 655277
如何引用文章
详细
Multilevel quantum states (qudits) represent a promising platform for scalable quantum comput-ing. In this paper, we present a method for precisely controlling such systems using fuzzy quantum measure-ments. The developed method is used for a precise reconstruction of quantum states under conditions of a significant effect of decoherence and quantum noise. Protocols for quantum measurements based on mutu-ally unbiased bases (MUBs) of various dimensions are considered. The accuracy characteristics of sets of ran-dom states uniformly distributed with respect to the Haar measure are studied.
作者简介
Yu. Bogdanov
Valiev Institute of Physics and Technology Institute, Russian Academy of Sciences
Email: bogdanov_yurii@inbox.ru
Moscow, 117218 Russia
N. Bogdanova
Valiev Institute of Physics and Technology Institute, Russian Academy of Sciences
Email: bogdanov_yurii@inbox.ru
Moscow, 117218 Russia
Yu. Kuznetsov
Valiev Institute of Physics and Technology Institute, Russian Academy of Sciences
Email: bogdanov_yurii@inbox.ru
Moscow, 117218 Russia
K. Koksharov
Valiev Institute of Physics and Technology Institute, Russian Academy of Sciences
Email: bogdanov_yurii@inbox.ru
Moscow, 117218 Russia
V. Lukichev
Valiev Institute of Physics and Technology Institute, Russian Academy of Sciences
编辑信件的主要联系方式.
Email: bogdanov_yurii@inbox.ru
Moscow, 117218 Russia
参考
- Nielsen Michael A., Chuang Isaac L. (2010). Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge: Cambridge University Press.
- Bogdanov Yu.I., Valiev K.A., Kokin A.A. Quantum computers: Achievements, implementation difficulties, and prospects // Russian Microelectronics, 2011. V. 40. № 4. PP. 225–236.
- Богданов Ю.И., Фастовец Д.В., Бантыш Б.И., Черняский А.Ю., Семенихин И.А., Богданова Н.А., Катамадзе К.Г., Кузнецов Ю.А., Кокин А.А., Лукичев В.Ф. Методы анализа качества элементной базы квантовых информационных технологий // Квантовая электроника. 48 (11), 1016–1022 (2018).
- Bogdanov Yu.I., Bantysh B.I., Chernyavskiy A.Yu., Lukichev V.F., and Orlikovsky A.A. Investigating the Effect of Amplitude and Phase Relaxation on the Quality of Quantum Information Technologies // Russian Microelectronics. 2015. V. 44. № 4. P. 225–230.
- Богданов Ю.И., Богданова Н.А., Фастовец Д.В., Лукичёв В.Ф. Решение уравнения Шредингера на квантовом компьютере методом Залки- Визнера с учетом квантовых шумов // Письма в ЖЭТФ. 2021. Т. 114. Выпуск 6. С. 391–399.
- Bogdanov Yu.I. Quantum measurements and high-precision control of quantum states // Proc. of SPIE. V. 12157. 121571V (2022).
- Banaszek K., Cramer M., Gross D. (ed.) 2012–2013 Focus on quantum tomography // New J. Phys. (focus issue) http://iopscience.iop.org/1367-2630/page/Focus%20on%20Quantum%20Tomography
- D’Ariano G.M., Paris M.G.A., Sacchi M.F. Quantum State Estimation // Lecture Notes in Physics / ed. Paris M., Řeháček J. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. V. 649. 519 p.
- Bogdanov Yu.I. Unified statistical method for reconstructing quantum states by purification, JETP 135, 6, 1068 (2009).
- Bogdanov Yu.I., Brida G., Genovese M., Kulik S.P., Moreva E.V., and Shurupov A.P. Statistical Estimation of the Efficiency of Quantum State Tomography Protocols // Phys. Rev. Lett. 2010. V. 105. 010404. 4 p.
- Bogdanov Yu.I., Brida G., Bukeev I.D., Genovese M., Kravtsov K.S., Kulik S.P., Moreva E.V., Soloviev A.A., Shurupov A.P. Statistical Estimation of Quantum Tomography Protocols Quality // Phys. Rev. A. 2011. V. 84. 042108. 19 p.
- Kiktenko E.O., Fedorov A.K., Strakhov A.A., Man’ko V.I. Single qudit realization of the Deutsch algorithm using superconducting many-level quantum circuits // Phys. Lett. A. 379:22 (2015). 1409–1413
- Kiktenko E.O., Nikolaeva A.S., Peng Xu, Shlyapnikov G.V., Fedorov A.K. Scalable quantum computing with qudits on a graph // J. Phys. A. 101:2 (2020), 22304. 7 pp. arXiv: 1909.08973.
- Бантыш Б.И., Богданов Ю.И., Фастовец Д.В., Кузнецов Ю.А. Квантовая томография ионных кудитов // Наноиндустрия. 2020. Т. 13. № S5-3 (102). С. 790–793. https://doi.org/10.22184/1993-8578.2020.13.5s.790.793
- Bantysh B.I., Bogdanov Yu.I. Quantum tomography of noisy ion-based qudits // Laser Phys. Lett. 2021. 18 015203 (Published 18 December 2020).
- Bogdanov Yu.I. Quantum tomography of arbitrary spin states of particles: root approach // Proceedings of SPIE. 2006. V. 6264. 626403. 10 p.
- Bogdanov Yu.I., Belinsky L.V. Finite frames constructed by solving Fekete problem and accuracy of quantum tomography protocols based on them // Proceedings of SPIE V.9440, International Conference on Micro- and Nano-Electronics 2014. 94401L
- Богданов Ю.И., Белинский Л.В. Оптимизация протоколов томографии квантовых состояний на основе решения задачи Томсона // Труды ФТИАН. М. Наука. 2015. Т. 25. С. 90–98.
- Holevo A.S. [Quantum Systems, Channels, Information], De Gruyter Studies in Mathematical Physics 16 (2012).
- Bogdanov Y.I. et al. Qutrit State Engineering with Biphotons // Phys. Rev. Lett. 2004. V. 93. № 23. P. 230503.
- Bogdanov Y.I. et al. Statistical reconstruction of qutrits // Phys. Rev. A. 2004. V. 70. № 4. P. 042303.
- Bogdanov Y.I., Krivitsky L.A., Kulik S.P. Statistical reconstruction of the quantum states of three-level optical systems // JETP Lett. 2003. V. 78. P. 352.
- Bogdanov Y.I., Bukeev I.D., Gavrichenko A.K. Studying Adequacy, Completeness, and Accuracy of Quantum Measurement // Opt. Spectrooscopy. 2011. V. 111. № 4. P. 647–655.
- Planat M., Rosu H.C., Perrine S. A Survey of Finite Algebraic Geometrical Structures Underlying Mutually Unbiased Quantum Measurements // Foundations of Physics. 2006. V. 36. P. 1662—1680. eprint: quant-ph/0409081.
- Wootters W.K., Fields B.D. Optimal state-determination by mutually unbiased measurements // Annals of Physics. 1989. V. 191. № 2. P. 363–381.
- Bengtsson I. Three Ways to Look at Mutually Unbiased Bases // AIP Conference Proceedings. AIP, 2007. V. 889. P. 40–51.
- Durt T., Englert B.G., Bengtsson I., and Yczkowski K. On mutually unbiased bases // Int. J. Quantum Inf., V. 8. № 4 PP. 535–640. 2010.
- Klappenecker A., Rötteler M. Constructions of mutually unbiased bases // International Conference on Finite Fields and Applications. Springer, 2003. P. 137–144.
- Богданов Ю.И., Лукичев В.Ф., Нуянзин С.А., Орликовский А.А., Холево А.С., Чернявский А.Ю. Математическое моделирование влияния квантовых шумов на качество элементной базы квантовых компьютеров // Труды ФТИАН. М. Наука. 2012. Т. 22. С. 39–77.
- Bogdanov Yu.I., Kalinkin A.A., Kulik S.P., Moreva E.V., Shershulin V.A. Quantum polarization transformations in anisotropic dispersive medium // New Journal of Physics. 2013. V. 15. 035012. 24 p.
- Chuang I.L., Nielsen M.A. Prescription for experimental determination of the dynamics of a quantum black box // J. Mod. Opt. 44. 2455 (1997); arXiv: quant-ph/9610001.
- Mohseni M., Rezakhani A.T., Lidar D.A. Quantum-process tomography: Resource analysis of different strategies // Phys. Rev. A 77. 032322 (2008).
- Bogdanov Yu.I., Nuyanzin S.A. Accuracy features for quantum process tomography using superconductor phase qubits // Bulletin of the Russian Academy of Sciences. Physics, 2012. V. 76. № 2. PP. 139–142; arXiv: quant-ph/1106.2906.
- Bogdanov Yu.I., Chernyavskiy A.Yu., Holevo A.S., Lukichev V.F., Orlikovsky A.A. Mathematical models of quantum noise // Proc. SPIE 8700, 870019 (2013).
- Bogdanov Yu.I., Bantysh B.I., Kalinkin A.A., Kulik S.P., Moreva E.V., Shershulin V.A. Optical polarization echo: Manifestation and study by methods of quantum tomography of states and processes // JETP 118. 6. 845–855 (2014).
- Bogdanov Yu.I., Bantysh B.I., Bogdanova N.A., Kvasnyy A.B., Lukichev V.F. Quantum states tomography with noisy measurement channels // Proceedings of SPIE 10224, International Conference on Micro- and Nano-Electronics 2016, 102242O (December 30, 2016).
- Бантыш Б.И., Богданов Ю.И., Богданова Н.А., Кузнецов Ю.А. Прецизионная томография квантовых состояний в условиях нечетких квантовых измерений // Труды ФТИАН. М. Наука. 2020. Т. 29. С. 18–42.
- Zyczkowski K., Sommers H.-J. Induced measures in the space of mixed quantum states // J. Phys. A. Math. Gen. 2001. V. 34. № 35. P. 7111–7125.
- Hayden P., Leung D., Shor P.W., Winter A. Randomizing quantum states: Constructions and applications, Communications in Mathematical Physics, 250(2), 371–391. (2004).
