Properties of immune exosomes and methods of their determination
- Авторлар: Garib V.F.1, Garib F.Y.2, Rizopulu A.P.2,3
-
Мекемелер:
- International Center for Molecular Allergology
- Russian Medical Academy of Continuous Professional Education
- Russian Academy of Sciences
- Шығарылым: Том 69, № 10 (2024)
- Беттер: 255-265
- Бөлім: Reviews
- ##submission.datePublished##: 14.10.2024
- URL: https://kld-journal.fedlab.ru/0869-2084/article/view/653492
- DOI: https://doi.org/10.17816/cld653492
- ID: 653492
Дәйексөз келтіру
Аннотация
Exosomes are extracellular nanoscale vesicles of endocytic origin that are actively secreted by cells of all pro- and eukaryotes. Human exosomes have a phospholipid bilayer that protects their contents from enzymatic degradation — proteins, cytokines, lipids, mRNAs, microRNAs, etc. There are many known variants of the contents of exosomes that carry basic intercellular information and are involved in all physiological processes. The search for literary sources was carried out with the help of the National Medical Library (NLM), namely the PubMed database. This review consists of 45 scientific articles. Their pathogenic role in cancer, cardiovascular diseases, asthma, infections and other diseases has been proven. The characteristics of exosomes, including their physical properties and markers, underlie various methods of their isolation, which makes it possible to study interactions between specific exosomes and target cells. The study of exosomes has formed the basis for fundamentally new approaches to understanding pathogenesis, developing highly informative diagnostic methods, targeted drug delivery, and creating new-generation vaccines. Attention is also drawn to the possibility of using exosomes for the treatment of human diseases derived from milk, animal, human, plant and parasite cell cultures, as well as the manufacture of artificial exosomes for targeted drug delivery and the creation of new generation vaccines.
Негізгі сөздер
Толық мәтін

Авторлар туралы
Victoria Garib
International Center for Molecular Allergology
Хат алмасуға жауапты Автор.
Email: vgarib@inbox.ru
ORCID iD: 0000-0003-3855-217X
MD, Dr. Sci. (Medicine), Professor
Өзбекстан, TashkentFiruz Garib
Russian Medical Academy of Continuous Professional Education
Email: fgarib@yandex.ru
ORCID iD: 0000-0003-3749-1950
MD, Dr. Sci. (Medicine), Professor
Ресей, MoscowAnna Rizopulu
Russian Medical Academy of Continuous Professional Education; Russian Academy of Sciences
Email: annarizopulu@inbox.ru
ORCID iD: 0009-0008-8631-0339
SPIN-код: 6286-6542
MD, Dr. Sci. (Biology)
Ресей, Moscow; MoscowӘдебиет тізімі
- van Niel G, D’Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles. Nature reviews Molecular cell biology. 2018;19:213–28. doi: 10.1038/nrm.2017.125
- Mir R, Baba SK, Elfaki I, et al. Unlocking the Secrets of Extracellular Vesicles: Orchestrating Tumor Microenvironment Dynamics in Metastasis, Drug Resistance, and Immune Evasion. Journal of Cancer. 2024;15(19):6383–6415. doi: 10.7150/jca.98426
- Yuana Y, Sturk A, Nieuwland R. Extracellular vesicles in physiological and pathological conditions. Blood Rev. 2013;27(1):31–39. doi: 10.1016/j.blre.2012.12.002
- Haraszti RA, Didiot MC, Sapp E, et al. High-resolution proteomic and lipidomic analysis of exosomes and microvesicles from different cell sources. J Extracell Vesicles. 2016;5(1):32570. doi: 10.3402/jev.v5.32570
- Zhang DX, Vu LT, Ismail NN, et al. Landscape of extracellular vesicles in the tumour microenvironment: Interactions with stromal cells and with non-cell components, and impacts on metabolic reprogramming, horizontal transfer of neoplastic traits, and the emergence of therapeutic resistance. Seminars in Cancer Biology. 2021;74:24–44. doi: 10.1016/j.semcancer.2021.01.007
- Colombo M, Raposo G, Thery C. Biogenesis, Secretion, and Intercellular Interactions of Exosomes and Other Extracellular Vesicles. Annual Review of Cell and Developmental Biology. 2014;30:255. doi: 10.1146/annurev-cellbio-101512-122326
- Dai Z, Cai R, Zeng H, et al. Exosome may be the next generation of promising cell-free vaccines. Human Vaccines & Immunotherapeutics. 2024;20(1):2345940. doi: 10.1080/21645515.2024.2345940
- Kaur S, Singh SP, Elkahloun AG, et al. CD47-dependent immunomodulatory and angiogenic activities of extracellular vesicles produced by T cells. Matrix Biol. 2014;37:49–59. doi: 10.1016/j.matbio.2014.05.007
- Zhang M, Schekman R. Unconventional Secretion, Unconventional Solutions. Science. 2013;340(6132):559–561. doi: 10.1126/science.1234740
- Willms E, Cabañas C, Mäger I, et al. Extracellular Vesicle Heterogeneity: Subpopulations, Isolation Techniques, and Diverse Functions in Cancer Progression. Front Immunol. 2018;9:738. doi: 10.3389/fimmu.2018.00738
- Keerthikumar S, Chisanga D, Ariyaratne D, et al. ExoCarta: A Web-Based Compendium of Exosomal Cargo. J Mol Biol. 2016;428(4):688–692. doi: 10.1016/j.jmb.2015.09.019
- Witwer KW, Goberdhan DCI, O’Driscoll L, et al. Updating MISEV: Evolving the minimal requirements for studies of extracellular vesicles. Journal of Extracellular Vesicles. 2021;10(14): e12182. doi: 10.1002/jev2.12182
- Wu R, Gao W, Yao K, Ge J. Roles of Exosomes Derived From Immune Cells in Cardiovascular Diseases. Front Immunol. 2019;10:648. doi: 10.3389/fimmu.2019.00648
- Gurung S, Perocheau D, Touramanidou L, et al. The exosome journey: from biogenesis to uptake and intracellular signalling. Cell Commun Signal. 2021;19:47. doi: 10.1186/s12964-021-00730-1
- Arenaccio C, Chiozzini C, Columba-Cabezas S, et al. Exosomes from Human Immunodeficiency Virus Type 1 (HIV-1)-Infected Cells License Quiescent CD4+ T Lymphocytes To Replicate HIV-1 through a Nef- and ADAM17-Dependent Mechanism. J Virol. 2014;88(19):11529–11539. doi: 10.1128/JVI.01712-14
- Théry C, Duban L, Segura E, et al. Indirect activation of naïve CD4+ T cells by dendritic cell-derived exosomes. Nat Immunol. 2002;3:1156–1162. doi: 10.1038/ni854
- Kim SH, Bianco N, Menon R, et al. Exosomes Derived from Genetically Modified DC Expressing FasL Are Anti-inflammatory and Immunosuppressive. Mol Ther. 2006;13(2):289–300. doi: 10.1016/j.ymthe.2005.09.015
- Tkach M, Kowal J, Zucchetti AE, et al. Qualitative differences in T-cell activation by dendritic cell-derived extracellular vesicle subtypes. EMBO J. 2017;36:3012–3028. doi: 10.15252/embj.201696003
- Giri PK, Schorey JS. Exosomes Derived from M. Bovis BCG Infected Macrophages Activate Antigen-Specific CD4 + and CD8 + T Cells In Vitro and In Vivo. PLoS One. 2008;3(6):e2461. doi: 10.1371/journal.pone.0002461
- Wang G, Jin S, Ling X, et al. Proteomic Profiling of LPS-Induced Macrophage-Derived Exosomes Indicates Their Involvement in Acute Liver Injury. Proteomics. 2019;19(3):e1800274. doi: 10.1002/pmic.201800274
- Osada-Oka M, Shiota M, Izumi Y, et al. Macrophage-derived exosomes induce inflammatory factors in endothelial cells under hypertensive conditions. Hypertens Res. 2017;40:353–360. doi: 10.1038/hr.2016.163
- Vargas A, Roux-Dalvai F, Droit A, Lavoie JP. Neutrophil-Derived Exosomes: A New Mechanism Contributing to Airway Smooth Muscle Remodeling. American Journal of Respiratory Cell and Molecular Biology. 2016;55(3):450–461. doi: 10.1165/rcmb.2016-0033OC
- Jiao Y, Zhang T, Zhang C, et al. Exosomal miR-30d-5p of neutrophils induces M1 macrophage polarization and primes macrophage pyroptosis in sepsis-related acute lung injury. Crit Care. 2021;25(1):356. doi: 10.1186/s13054-021-03775-3
- Cañas JA, Sastre B, Rodrigo-Muñoz JM, Del Pozo V. Exosomes: A new approach to asthma pathology. Clin Chim Acta. 2019;495:139–147. doi: 10.1016/j.cca.2019.04.055
- Enomoto Y, Li P, Jenkins LM, et al. Cytokine-enhanced cytolytic activity of exosomes from NK Cells. Cancer Gene Ther. 2022;29(6):734–749. doi: 10.1038/s41417-021-00352-2
- Knight AM. Regulated release of B cell-derived exosomes: do differences in exosome release provide insight into different APC function for B cells and DC? Eur J Immunol. 2008;38(5):1186–1189. doi: 10.1002/eji.200838374
- Lu J, Wu J, Tian J, Wang S. Role of T cell-derived exosomes in immunoregulation. Immunol Res. 2018;66:313–322. doi: 10.1007/s12026-018-9000-0
- Tung SL, Boardman DA, Sen M, et al. Regulatory T cell-derived extracellular vesicles modify dendritic cell function. Sci Rep. 2018;8(1):6065. doi: 10.1038/s41598-018-24531-8
- Chen J, Song Y, Miao F, et al. PDL1-positive exosomes suppress antitumor immunity by inducing tumor-specific CD8+ T cell exhaustion during metastasis. Cancer Sci. 2021;112(9):3437–3454. doi: 10.1111/cas.15033
- Szabó GT, Tarr B, Pálóczi K, et al. Critical role of extracellular vesicles in modulating the cellular effects of cytokines. Cellular and Molecular Life Sciences. 2014;71:4055–4067. doi: 10.1007/s00018-014-1618-z
- Lima LG, Ham S, Shin H, et al. Tumor microenvironmental cytokines bound to cancer exosomes determine uptake by cytokine receptor-expressing cells and biodistribution. Nat Commun. 2021;12(1):3543. doi: 10.1038/s41467-021-23946-8
- Rajagopal C, Harikumar KB. The Origin and Functions of Exosomes in Cancer. Front Oncol. 2018;8:66. doi: 10.3389/fonc.2018.00066
- Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes. Science. 2020;367:eaau6977. doi: 10.1126/science.aau6977
- Zhou J, Li X, Wu X, et al. Exosomes Released from Tumor-Associated Macrophages Transfer miRNAs That Induce a Treg/Th17 Cell Imbalance in Epithelial Ovarian Cancer. Cancer Immunol Res. 2018;6(12):1578–1592. doi: 10.1158/2326-6066.CIR-17-0479
- Rashid MH, Borin TF, Ara R, et al. Critical immunosuppressive effect of MDSC-derived exosomes in the tumor microenvironment. Oncol Rep. 2021;45(3):1171–1181. doi: 10.3892/or.2021.7936
- Plebanek MP, Angeloni NL, Vinokour E, et al. Pre-metastatic cancer exosomes induce immune surveillance by patrolling monocytes at the metastatic niche. Nat Commun. 2017;8(1):1319. doi: 10.1038/s41467-017-01433-3
- Ciravolo V, Huber V, Ghedini GC, et al. Potential role of HER2-overexpressing exosomes in countering trastuzumab-based therapy. J Cell Physiol. 2012;227(2):658–667. doi: 10.1002/jcp.22773
- Engeroff P, Vogel M. The Potential of Exosomes in Allergy Immunotherapy. Vaccines (Basel). 2022;10(1):133. doi: 10.3390/vaccines10010133
- Huang L, Zhang X, Wang M, et al. Exosomes from Thymic Stromal Lymphopoietin-Activated Dendritic Cells Promote Th2 Differentiation through the OX40 Ligand. Pathobiology. 2019;86(2–3):111–117. doi: 10.1159/000493013
- Mortaz E, Alipoor SD, Varahram M, et al. Exosomes in Severe Asthma: Update in Their Roles and Potential in Therapy. Biomed Res Int. 2018;2018:2862187. doi: 10.1155/2018/2862187
- Jaworski E, Narayanan A, Van Duyne R, et al. Human T-lymphotropic virus type 1-infected cells secrete exosomes that contain Tax protein. J Biol Chem. 2014;289(32):22284–22305. doi: 10.1074/jbc.M114.549659
- Matsuoka M, Jeang KT. Human T-cell leukemia virus type 1 (HTLV-1) and leukemic transformation: viral infectivity, Tax, HBZ and therapy. Oncogene. 2011;30(12):1379–1389. doi: 10.1038/onc.2010.537
- Aqil M, Mallik S, Bandyopadhyay S, et al. Transcriptomic Analysis of mRNAs in Human Monocytic Cells Expressing the HIV-1 Nef Protein and Their Exosomes. Biomed Res Int. 2015;2015:492395. doi: 10.1155/2015/492395
- Li L, Gu B, Zhou F, et al. Human herpesvirus 6 suppresses T cell proliferation through induction of cell cycle arrest in infected cells in the G2/M phase. J Virol. 2011;85(13):6774–6783. doi: 10.1128/JVI.02577-10
- Ryan R, Hill S. Qualitative evidence synthesis informing our understanding of people’s perceptions and experiences of targeted digital communication. Cochrane Database Syst Rev. 2019;10(10):ED000141. doi: 10.1002/14651858.ED000141
Қосымша файлдар
