Properties of immune exosomes and methods of their determination

Мұқаба


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Рұқсат ақылы немесе тек жазылушылар үшін

Аннотация

Exosomes are extracellular nanoscale vesicles of endocytic origin that are actively secreted by cells of all pro- and eukaryotes. Human exosomes have a phospholipid bilayer that protects their contents from enzymatic degradation — proteins, cytokines, lipids, mRNAs, microRNAs, etc. There are many known variants of the contents of exosomes that carry basic intercellular information and are involved in all physiological processes. The search for literary sources was carried out with the help of the National Medical Library (NLM), namely the PubMed database. This review consists of 45 scientific articles. Their pathogenic role in cancer, cardiovascular diseases, asthma, infections and other diseases has been proven. The characteristics of exosomes, including their physical properties and markers, underlie various methods of their isolation, which makes it possible to study interactions between specific exosomes and target cells. The study of exosomes has formed the basis for fundamentally new approaches to understanding pathogenesis, developing highly informative diagnostic methods, targeted drug delivery, and creating new-generation vaccines. Attention is also drawn to the possibility of using exosomes for the treatment of human diseases derived from milk, animal, human, plant and parasite cell cultures, as well as the manufacture of artificial exosomes for targeted drug delivery and the creation of new generation vaccines.

Толық мәтін

Рұқсат жабық

Авторлар туралы

Victoria Garib

International Center for Molecular Allergology

Хат алмасуға жауапты Автор.
Email: vgarib@inbox.ru
ORCID iD: 0000-0003-3855-217X

MD, Dr. Sci. (Medicine), Professor

Өзбекстан, Tashkent

Firuz Garib

Russian Medical Academy of Continuous Professional Education

Email: fgarib@yandex.ru
ORCID iD: 0000-0003-3749-1950

MD, Dr. Sci. (Medicine), Professor

Ресей, Moscow

Anna Rizopulu

Russian Medical Academy of Continuous Professional Education; Russian Academy of Sciences

Email: annarizopulu@inbox.ru
ORCID iD: 0009-0008-8631-0339
SPIN-код: 6286-6542

MD, Dr. Sci. (Biology)

Ресей, Moscow; Moscow

Әдебиет тізімі

  1. van Niel G, D’Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles. Nature reviews Molecular cell biology. 2018;19:213–28. doi: 10.1038/nrm.2017.125
  2. Mir R, Baba SK, Elfaki I, et al. Unlocking the Secrets of Extracellular Vesicles: Orchestrating Tumor Microenvironment Dynamics in Metastasis, Drug Resistance, and Immune Evasion. Journal of Cancer. 2024;15(19):6383–6415. doi: 10.7150/jca.98426
  3. Yuana Y, Sturk A, Nieuwland R. Extracellular vesicles in physiological and pathological conditions. Blood Rev. 2013;27(1):31–39. doi: 10.1016/j.blre.2012.12.002
  4. Haraszti RA, Didiot MC, Sapp E, et al. High-resolution proteomic and lipidomic analysis of exosomes and microvesicles from different cell sources. J Extracell Vesicles. 2016;5(1):32570. doi: 10.3402/jev.v5.32570
  5. Zhang DX, Vu LT, Ismail NN, et al. Landscape of extracellular vesicles in the tumour microenvironment: Interactions with stromal cells and with non-cell components, and impacts on metabolic reprogramming, horizontal transfer of neoplastic traits, and the emergence of therapeutic resistance. Seminars in Cancer Biology. 2021;74:24–44. doi: 10.1016/j.semcancer.2021.01.007
  6. Colombo M, Raposo G, Thery C. Biogenesis, Secretion, and Intercellular Interactions of Exosomes and Other Extracellular Vesicles. Annual Review of Cell and Developmental Biology. 2014;30:255. doi: 10.1146/annurev-cellbio-101512-122326
  7. Dai Z, Cai R, Zeng H, et al. Exosome may be the next generation of promising cell-free vaccines. Human Vaccines & Immunotherapeutics. 2024;20(1):2345940. doi: 10.1080/21645515.2024.2345940
  8. Kaur S, Singh SP, Elkahloun AG, et al. CD47-dependent immunomodulatory and angiogenic activities of extracellular vesicles produced by T cells. Matrix Biol. 2014;37:49–59. doi: 10.1016/j.matbio.2014.05.007
  9. Zhang M, Schekman R. Unconventional Secretion, Unconventional Solutions. Science. 2013;340(6132):559–561. doi: 10.1126/science.1234740
  10. Willms E, Cabañas C, Mäger I, et al. Extracellular Vesicle Heterogeneity: Subpopulations, Isolation Techniques, and Diverse Functions in Cancer Progression. Front Immunol. 2018;9:738. doi: 10.3389/fimmu.2018.00738
  11. Keerthikumar S, Chisanga D, Ariyaratne D, et al. ExoCarta: A Web-Based Compendium of Exosomal Cargo. J Mol Biol. 2016;428(4):688–692. doi: 10.1016/j.jmb.2015.09.019
  12. Witwer KW, Goberdhan DCI, O’Driscoll L, et al. Updating MISEV: Evolving the minimal requirements for studies of extracellular vesicles. Journal of Extracellular Vesicles. 2021;10(14): e12182. doi: 10.1002/jev2.12182
  13. Wu R, Gao W, Yao K, Ge J. Roles of Exosomes Derived From Immune Cells in Cardiovascular Diseases. Front Immunol. 2019;10:648. doi: 10.3389/fimmu.2019.00648
  14. Gurung S, Perocheau D, Touramanidou L, et al. The exosome journey: from biogenesis to uptake and intracellular signalling. Cell Commun Signal. 2021;19:47. doi: 10.1186/s12964-021-00730-1
  15. Arenaccio C, Chiozzini C, Columba-Cabezas S, et al. Exosomes from Human Immunodeficiency Virus Type 1 (HIV-1)-Infected Cells License Quiescent CD4+ T Lymphocytes To Replicate HIV-1 through a Nef- and ADAM17-Dependent Mechanism. J Virol. 2014;88(19):11529–11539. doi: 10.1128/JVI.01712-14
  16. Théry C, Duban L, Segura E, et al. Indirect activation of naïve CD4+ T cells by dendritic cell-derived exosomes. Nat Immunol. 2002;3:1156–1162. doi: 10.1038/ni854
  17. Kim SH, Bianco N, Menon R, et al. Exosomes Derived from Genetically Modified DC Expressing FasL Are Anti-inflammatory and Immunosuppressive. Mol Ther. 2006;13(2):289–300. doi: 10.1016/j.ymthe.2005.09.015
  18. Tkach M, Kowal J, Zucchetti AE, et al. Qualitative differences in T-cell activation by dendritic cell-derived extracellular vesicle subtypes. EMBO J. 2017;36:3012–3028. doi: 10.15252/embj.201696003
  19. Giri PK, Schorey JS. Exosomes Derived from M. Bovis BCG Infected Macrophages Activate Antigen-Specific CD4 + and CD8 + T Cells In Vitro and In Vivo. PLoS One. 2008;3(6):e2461. doi: 10.1371/journal.pone.0002461
  20. Wang G, Jin S, Ling X, et al. Proteomic Profiling of LPS-Induced Macrophage-Derived Exosomes Indicates Their Involvement in Acute Liver Injury. Proteomics. 2019;19(3):e1800274. doi: 10.1002/pmic.201800274
  21. Osada-Oka M, Shiota M, Izumi Y, et al. Macrophage-derived exosomes induce inflammatory factors in endothelial cells under hypertensive conditions. Hypertens Res. 2017;40:353–360. doi: 10.1038/hr.2016.163
  22. Vargas A, Roux-Dalvai F, Droit A, Lavoie JP. Neutrophil-Derived Exosomes: A New Mechanism Contributing to Airway Smooth Muscle Remodeling. American Journal of Respiratory Cell and Molecular Biology. 2016;55(3):450–461. doi: 10.1165/rcmb.2016-0033OC
  23. Jiao Y, Zhang T, Zhang C, et al. Exosomal miR-30d-5p of neutrophils induces M1 macrophage polarization and primes macrophage pyroptosis in sepsis-related acute lung injury. Crit Care. 2021;25(1):356. doi: 10.1186/s13054-021-03775-3
  24. Cañas JA, Sastre B, Rodrigo-Muñoz JM, Del Pozo V. Exosomes: A new approach to asthma pathology. Clin Chim Acta. 2019;495:139–147. doi: 10.1016/j.cca.2019.04.055
  25. Enomoto Y, Li P, Jenkins LM, et al. Cytokine-enhanced cytolytic activity of exosomes from NK Cells. Cancer Gene Ther. 2022;29(6):734–749. doi: 10.1038/s41417-021-00352-2
  26. Knight AM. Regulated release of B cell-derived exosomes: do differences in exosome release provide insight into different APC function for B cells and DC? Eur J Immunol. 2008;38(5):1186–1189. doi: 10.1002/eji.200838374
  27. Lu J, Wu J, Tian J, Wang S. Role of T cell-derived exosomes in immunoregulation. Immunol Res. 2018;66:313–322. doi: 10.1007/s12026-018-9000-0
  28. Tung SL, Boardman DA, Sen M, et al. Regulatory T cell-derived extracellular vesicles modify dendritic cell function. Sci Rep. 2018;8(1):6065. doi: 10.1038/s41598-018-24531-8
  29. Chen J, Song Y, Miao F, et al. PDL1-positive exosomes suppress antitumor immunity by inducing tumor-specific CD8+ T cell exhaustion during metastasis. Cancer Sci. 2021;112(9):3437–3454. doi: 10.1111/cas.15033
  30. Szabó GT, Tarr B, Pálóczi K, et al. Critical role of extracellular vesicles in modulating the cellular effects of cytokines. Cellular and Molecular Life Sciences. 2014;71:4055–4067. doi: 10.1007/s00018-014-1618-z
  31. Lima LG, Ham S, Shin H, et al. Tumor microenvironmental cytokines bound to cancer exosomes determine uptake by cytokine receptor-expressing cells and biodistribution. Nat Commun. 2021;12(1):3543. doi: 10.1038/s41467-021-23946-8
  32. Rajagopal C, Harikumar KB. The Origin and Functions of Exosomes in Cancer. Front Oncol. 2018;8:66. doi: 10.3389/fonc.2018.00066
  33. Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes. Science. 2020;367:eaau6977. doi: 10.1126/science.aau6977
  34. Zhou J, Li X, Wu X, et al. Exosomes Released from Tumor-Associated Macrophages Transfer miRNAs That Induce a Treg/Th17 Cell Imbalance in Epithelial Ovarian Cancer. Cancer Immunol Res. 2018;6(12):1578–1592. doi: 10.1158/2326-6066.CIR-17-0479
  35. Rashid MH, Borin TF, Ara R, et al. Critical immunosuppressive effect of MDSC-derived exosomes in the tumor microenvironment. Oncol Rep. 2021;45(3):1171–1181. doi: 10.3892/or.2021.7936
  36. Plebanek MP, Angeloni NL, Vinokour E, et al. Pre-metastatic cancer exosomes induce immune surveillance by patrolling monocytes at the metastatic niche. Nat Commun. 2017;8(1):1319. doi: 10.1038/s41467-017-01433-3
  37. Ciravolo V, Huber V, Ghedini GC, et al. Potential role of HER2-overexpressing exosomes in countering trastuzumab-based therapy. J Cell Physiol. 2012;227(2):658–667. doi: 10.1002/jcp.22773
  38. Engeroff P, Vogel M. The Potential of Exosomes in Allergy Immunotherapy. Vaccines (Basel). 2022;10(1):133. doi: 10.3390/vaccines10010133
  39. Huang L, Zhang X, Wang M, et al. Exosomes from Thymic Stromal Lymphopoietin-Activated Dendritic Cells Promote Th2 Differentiation through the OX40 Ligand. Pathobiology. 2019;86(2–3):111–117. doi: 10.1159/000493013
  40. Mortaz E, Alipoor SD, Varahram M, et al. Exosomes in Severe Asthma: Update in Their Roles and Potential in Therapy. Biomed Res Int. 2018;2018:2862187. doi: 10.1155/2018/2862187
  41. Jaworski E, Narayanan A, Van Duyne R, et al. Human T-lymphotropic virus type 1-infected cells secrete exosomes that contain Tax protein. J Biol Chem. 2014;289(32):22284–22305. doi: 10.1074/jbc.M114.549659
  42. Matsuoka M, Jeang KT. Human T-cell leukemia virus type 1 (HTLV-1) and leukemic transformation: viral infectivity, Tax, HBZ and therapy. Oncogene. 2011;30(12):1379–1389. doi: 10.1038/onc.2010.537
  43. Aqil M, Mallik S, Bandyopadhyay S, et al. Transcriptomic Analysis of mRNAs in Human Monocytic Cells Expressing the HIV-1 Nef Protein and Their Exosomes. Biomed Res Int. 2015;2015:492395. doi: 10.1155/2015/492395
  44. Li L, Gu B, Zhou F, et al. Human herpesvirus 6 suppresses T cell proliferation through induction of cell cycle arrest in infected cells in the G2/M phase. J Virol. 2011;85(13):6774–6783. doi: 10.1128/JVI.02577-10
  45. Ryan R, Hill S. Qualitative evidence synthesis informing our understanding of people’s perceptions and experiences of targeted digital communication. Cochrane Database Syst Rev. 2019;10(10):ED000141. doi: 10.1002/14651858.ED000141

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Garib V.F., Garib F.Y., Rizopulu A.P., 2024

Creative Commons License
Бұл мақала лицензия бойынша қол жетімді Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ:  ПИ № ФС 77 - 86785 от 05.02.2024 (ранее — ПИ № ФС 77 - 59057 от 22.08.2014).