Analysis of cardiac troponins to determine the drugs cardiotoxicity

封面


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

In modern medicine, the problem of the toxic effect of drugs on the human body persists. Cardiotoxicity is damage to the heart muscle by drugs and biologically active additives is one of the most common negative consequences. The task of doctors is to identify the presence of cardiotoxicity in the early stages before the appearance of clinical symptoms, timely adjust therapy and add cardioprotectors if necessary. Today, the main methods of diagnosing cardiotoxicity are imaging methods — echocardiography and magnetic resonance imaging. These methods show structural changes in the myocardium that have already occurred and a decrease in the working indicators of the heart. The active implementation and development of an algorithm for the use of troponin tests before and during therapy by drugs with cardiotoxic effects makes it possible to identify high-risk patients, diagnose damage to the heart muscle earlier and reduce the number of studies. The review analyzes trials in which cardiac troponins were used as cardiotoxicity markers of various drugs, shows the technical limitations of laboratory methods for troponin T and I tests, and the prospects for predictive use of determining highly sensitive tests for cardiac troponins.

全文:

受限制的访问

作者简介

Tatyana Sheshurina

The Lesgaft National State University of Physical Education, Sports and Health; City medical and physical education dispensary

编辑信件的主要联系方式.
Email: mitralis@list.ru
ORCID iD: 0000-0003-1221-2396
SPIN 代码: 3315-4018

MD, Cand. Sci. (Medicine)

俄罗斯联邦, St. Petersburg; St. Petersburg

Vladimir Dorofeykov

The Lesgaft National State University of Physical Education, Sports and Health; Almazov National Medical Research Centre

Email: vdorofeykov@ya.ru
ORCID iD: 0000-0002-7272-1654
SPIN 代码: 6462-6448

MD, Dr. Sci. (Medicine)

俄罗斯联邦, St. Petersburg; St. Petersburg

参考

  1. Von Hoff DD, Layard MW, Basa P, et al. Risk factors for doxorubicin-induced congestive heart failure. Ann Intern Med. 1979;91(5):710–717. doi: 10.7326/0003-4819-91-5-710
  2. Palmer KG, Lebin JA, Cronin MT, Mazor SS, Burns RA. Crataegus mexicana (Tejocote) Exposure Associated with Cardiotoxicity and a Falsely Elevated Digoxin Level. J Med Toxicol. 2019;15(4):295–298. doi: 10.1007/s13181-019-00727-w
  3. Ebrahimi A, Raichlen JS, Pointon A, et al. Drug-induced myocardial dysfunction - recommendations for assessment in clinical and pre-clinical studies. Expert Opin Drug Saf. 2020;19(3):281–294. doi: 10.1080/14740338.2020.1731471
  4. Kelly DL, McMahon RP, Liu F, et al. Cardiovascular disease mortality in patients with chronic schizophrenia treated with clozapine: a retrospective cohort study. J. Clin. Psychiatry. 2010;71(3):304–311. doi: 10.4088/JCP.08m04718yel
  5. Li X, Guo X, Li J, Yuan L, Wang H. Preventing effect of astragalus polysaccharide on cardiotoxicity induced by chemotherapy of epirubicin: A pilot study. Medicine (Baltimore). 2022;101(32):e30000. doi: 10.1097/MD.0000000000030000
  6. Joolharzadeh P, Rodriguez M, Zaghlol R, et al. Recent Advances in Serum Biomarkers for Risk Stratification and Patient Management in Cardio-Oncology. Curr Cardiol Rep. 2023;25(3):133–146. doi: 10.1007/s11886-022-01834-x
  7. Sirur FM, Wilson W, Gopinathan V, et al. Hymenoptera heartaches - cardiac manifestation with hymenoptera stings, a retrospective study from a tertiary care hospital in South India. The American Journal of Emergency Medicine. 2021(50):294–300. doi: 10.1016/j.ajem.2021.08.003
  8. Razinger G, Kozelj G, Gorjup V, Grenc D, Brvar M. Accidental poisoning with autumn crocus (Colchicum autumnale): a case series. Clinical Toxicology. 2021;59(6)493–499. doi: 10.1080/15563650.2020.1832234
  9. Chiba K, Ishizaka T, Yoshimatsu Y, et al. Comprehensive analysis of cardiac function, blood biomarkers and histopathology for milrinone-induced cardiotoxicity in cynomolgus monkeys. Journal of Pharmacological and Toxicological Methods. 2020(103):106870. doi: 10.1016/j.vascn.2020.106870
  10. Desai P, Lonial S, Cashen A, et al. A Phase 1 First-in-Human Study of the MCL-1 Inhibitor AZD5991 in Patients with Relapsed/Refractory Hematologic Malignancies. Clin Cancer Res. 2024;30(21):4844–4855. doi: 10.1158/1078-0432.CCR-24-0028
  11. Zver S, Zadnik V, Bunc M, et al. Cardiac Toxicity of High-Dose Cyclophosphamide in Patients with Multiple Myeloma Undergoing Autologous Hematopoietic Stem Cell Transplantation. Int J Hematol. 2007;85:408–414. doi: 10.1532/IJH97.E0620
  12. Bernasconi L, Schicchi A, Pirozzolo R, et al. Coronary thrombosis after European adder bite in a patient on dual antiplatelet therapy: A case report. Toxicon. 2022(220):106961. doi: 10.1016/j.toxicon.2022.106961
  13. Tanzilli G, Truscelli G, Arrivi A, et al. Glutathione infusion before primary percutaneous coronary intervention: a randomised controlled pilot study. BMJ Open. 2019;9(8):e025884. doi: 10.1136/bmjopen-2018-025884
  14. Lyon AR, Lopez-Fernandez T, Couch LS, et al. 2022 ESC Guidelines on cardio-oncology developed in collaboration with the European Hematology Association (EHA), the European Society for Therapeutic Radiology and Oncology (ESTRO) and the International Cardio-Oncology Society (IC-OS): Developed by the task force on cardio-oncology of the European Society of Cardiology (ESC). European Heart Journal — Cardiovascular Imaging. 2022;23(10):333–465. doi: 10.1093/ehjci/jeac106
  15. Radyukova IM, Nechaeva GI, Korennova OY, et al. Clinic and laboratory bases for simvastatin use for cardiovascular injuries prevention conditioned by anthracycline-containing polychemotherapy of breast cancer. Lechaschi Vrach. 2012(5):80–83. (In Russ.)
  16. Cardinale D, Ciceri F, Latini R, et al. Anthracycline-induced cardiotoxicity: A multicenter randomised trial comparing two strategies for guiding prevention with enalapril: The International CardioOncology Society-one trial. European Journal of Cancer. 2018;(94):126–137. doi: 10.1016/j.ejca.2018.02.005
  17. Tzolos E, Adamson PD, Hall PS, et al. Dynamic Changes in High-Sensitivity Cardiac Troponin I in Response to Anthracycline-Based Chemotherapy. Clinical Oncology. 2020;32(5):292–297. doi: 10.1016/j.clon.2019.11.008
  18. Rüger AM, Schneeweiss A, Seiler S, et al. Cardiotoxicity and Cardiovascular Biomarkers in Patients With Breast Cancer: Data From the GeparOcto-GBG 84 Trial. Journal of the American Heart Association. 2020;9(23):e018143. doi: 10.1161/JAHA.120.018143
  19. Xue K, Gu JJ, Zhang Q, et al. Cardiotoxicity as indicated by LVEF and troponin T sensitivity following two anthracycline-based regimens in lymphoma: Results from a randomized prospective clinical trial. Oncotarget. 2016;7(22)32519–32531. doi: 10.18632/oncotarget.8685
  20. Sorodoc V, Sirbu O, Lionte C, et al. The Value of Troponin as a Biomarker of Chemotherapy-Induced Cardiotoxicity. Life (Basel). 2022;12(8):1183. doi: 10.3390/life12081183
  21. Ciburienė E, Aidietiene S, Scerbickaite G, et al. Ivabradine for the Prevention of Anthracycline-Induced Cardiotoxicity in Female Patients with Primarily Breast Cancer: A Prospective, Randomized, Open-Label Clinical Trial. Medicina. 2023;59(12):2140. doi: 10.3390/medicina59122140
  22. Henriksen PA, Hall P, MacPherson IR, et al. Multicenter, Prospective, Randomized Controlled Trial of High-Sensitivity Cardiac Troponin I-Guided Combination Angiotensin Receptor Blockade and Beta-Blocker Therapy to Prevent Anthracycline Cardiotoxicity: The Cardiac CARE Trial. Circulation. 2023;148(21):1680–1690. doi: 10.1161/CIRCULATIONAHA.123.064274
  23. Li Y, Ju L, Hou Z, et al. Screening, verification, and optimization of biomarkers for early prediction of cardiotoxicity based on metabolomics. Journal of Proteome Research. 2015;14(6):2437–2445. doi: 10.1021/pr501116c
  24. Díaz-Antón B, Madurga R, Zorita B, et al. Early detection of anthracycline- and trastuzumab-induced cardiotoxicity: value and optimal timing of serum biomarkers and echocardiographic parameters. ESC Heart Fail. 2022;9(2):1127–1137. doi: 10.1002/ehf2.13782
  25. Kirkham AA, Pituskin E, Thompson RB, et al. Cardiac and cardiometabolic phenotyping of trastuzumab-mediated cardiotoxicity: a secondary analysis of the MANTICORE trial. Eur Heart J Cardiovasc Pharmacother. 2022;8(2):130–139. doi: 10.1093/ehjcvp/pvab016
  26. Wang Y, Lu C, Li H, et al. 3D-STI evaluation of the effect of dexrazoxane on the mechanical properties of right ventricular myocardium in breast cancer patients treated with pirarubicin. Ann Palliat Med. 2020;9(3):1187–1197. doi: 10.21037/apm-20-1074
  27. Kettana KM, El-Haggar SM, Alm El-Din MA, El-Afify DR. Possible protective effect of rosuvastatin in chemotherapy-induced cardiotoxicity in HER2 positive breast cancer patients: a randomized controlled trial. Med Oncol. 2024;41(8):196. doi: 10.1007/s12032-024-02426-1
  28. Xu T, Meng QH, Gilchrist SC, et al. Assessment of Prognostic Value of High-Sensitivity Cardiac Troponin T for Early Prediction of Chemoradiation Therapy-Induced Cardiotoxicity in Patients with Non-Small Cell Lung Cancer: A Secondary Analysis of a Prospective Randomized Trial. Int J Radiat Oncol Biol Phys. 2021;111(4):907–916. doi: 10.1016/j.ijrobp.2021.07.035
  29. Pourtaji A, Sahebkar A, Poorzand H, et al. Evaluation of the Cardioprotective Effect of Granulocyte Colony Stimulating Factor in Patients with Carbon Monoxide Poisoning. Protein Pept Lett. 2021;28(5):589–601. doi: 10.2174/0929866527666201022112810
  30. Bortulev SA, Aleksandrov MV, Ivanov MB, et al. Clinical and experimental study of the peculiarities of cardiac activity disorders during poisoning by combustion products in persons of different age groups. Advances in Gerontology. 2018;31(4):538–548. (In Russ.) EDN: YABWDB
  31. Li MT, He Y, Huang SY, Hu X, Chen JS. Clinical characteristics, diagnosis and management of nivolumab-induced myocarditis. Invest New Drugs. 2024;42(1):116–120. doi: 10.1007/s10637-024-01421-7
  32. Monge C, Maeng H, Brofferio A, et al. Myocarditis in a patient treated with Nivolumab and PROSTVAC: a case report. J Immunother Cancer. 2018;6(1):150. doi: 10.1186/s40425-018-0473-0
  33. Ponde N, Bradbury I, Lambertini M, et al. Cardiac biomarkers for early detection and prediction of trastuzumab and/or lapatinib-induced cardiotoxicity in patients with HER2-positive early-stage breast cancer: a NeoALTTO sub-study (BIG 1-06). Breast Cancer Res Treat. 2018;168:631–638. doi: 10.1007/s10549-017-4628-3
  34. Krikunova OV, Vasyuk YuA, Viskov RV, et al. Chemotherapy cardiotoxicity screening with cardiac troponins. Russian Journal of Cardiology. 2015;20(12):119–125. (In Russ.) EDN: UXMJYV
  35. Seliverstova DV, Evsina OV. Cardiotoxicity of chemotherapy. Russian Heart Journal. 2016;15(1):50–57. (In Russ.) EDN: VOXGVT
  36. Alpert JS, Thygesen K, Antman E, Bassand JP. Myocardial infarction redefined—a consensus document of The Joint European Society of Cardiology/American College of Cardiology committee for the redefinition of myocardial infarction: The Joint European Society of Cardiology/ American College of Cardiology Committee. Journal of the American College of Cardiology. 2000;36(3):959–969. doi: 10.1016/s0735-1097(00)00804-4
  37. Simůnek T, Klimtová I, Adamcová M, et al. Cardiac troponin T as an indicator of reduced left ventricular contractility in experimental anthracycline-induced cardiomyopathy. Cancer Chemother Pharmacol. 2003;52:431–434. doi: 10.1007/s00280-003-0675-z
  38. Cardinale D, Sandri MT, Colombo A, et al. Prognostic value of troponin I in cardiac risk stratification of cancer patients undergoing high-dose chemotherapy. Circulation. 2004;109(22):2749–2754. doi: 10.1161/01.CIR.0000130926.51766.CC
  39. Furukawa A, Tamura Y, Taniguchi H, et al. Prospective screening for myocarditis in cancer patients treated with immune checkpoint inhibitors. J Cardiol. 2023;81(1):63–67. doi: 10.1016/j.jjcc.2022.07.009
  40. Thygesen K, Alpert JS, Jaffe AS, et al. Fourth Universal Definition of Myocardial Infarction (2018). J Am Coll Cardiol. 2018;72(18):2231–2264. doi: 10.1016/j.jacc.2018.08.1038
  41. Kozinski M, Krintus M, Kubica J, Sypniewska G. High-sensitivity cardiac troponin assays: From improved analytical performance to enhanced risk stratification. Crit Rev Clin Lab Sci. 2017;54(3):143–172. doi: 10.1080/10408363.2017.1285268
  42. Dorofeykov VV. New purpose for a well-known test: highly sensitive troponin i for risk stratification of cardiovascular events in a conditionally healthy population. Handbook of the Head of the Clinical Diagnostic Laboratory. 2021(3):64–68. (In Russ.) EDN: HUJQFR
  43. Cardinale DM, Zaninotto M, Cipolla CM, et al. Cardiotoxic effects and myocardial injury: the search for a more precise definition of drug cardiotoxicity. Clin Chem Lab Med. 2020;59(1):51–57. doi: 10.1515/cclm-2020-0566
  44. Polena S, Shikara M, Naik S, et al. Troponin I as a marker of doxorubicin induced cardiotoxicity. Proc West Pharmacol Soc. 2005;48:142–144.
  45. Tarasevich RA, Begun IV, Lazyuk DG, et al. Study of serum troponine i in children with acute promyelocytic leukemia and osteogenic sarcoma during treatment according to protocols including anthracyclin antibiotics. Pediatric Hematology/Oncology and Immunopathology. 2004;3(3):50–52. (In Russ.) EDN: IAFTHF
  46. Ederhy S, Massard C, Dufaitre G, et al. Frequency and management of troponin I elevation in patients treated with molecular targeted therapies in phase I trials. Invest New Drugs. 2012;30(2):611–615. doi: 10.1007/s10637-010-9546-8
  47. Hollebecque A, Lanoy E, Troallen F, et al. Cardiac troponin I elevation and overall survival among cancer patients receiving investigational compounds during phase I trials. Int J Cardiol. 2016(214):364–369. doi: 10.1016/j.ijcard.2016.04.010
  48. Köseoğlu V, Berberoğlu S, Karademir S, et al. Cardiac troponin I: is it a marker to detect cardiotoxicity in children treated with doxorubicin? Turk J Pediatr. 2005;471:17–22.
  49. Antunac K, Mayer L, Banovic M, Beketic-Oreskovic L. Correlation of High-Sensitivity Cardiac Troponin I Values and Cardiac Radiation Doses in Patients with Left-Sided Breast Cancer Undergoing Hypofractionated Adjuvant Radiotherapy with Concurrent Anti-HER2 Therapy. Curr Oncol. 2023;30(10):9049–9062. doi: 10.3390/curroncol30100654
  50. Ruzhentsova TA, Mileykova EI, Mozhenkova AV, et al. Role of increase of MB-creatine kinase in different extracardiac pathologies. Lechaschi Vrach. 2018(10):80–83. (In Russ.) EDN: YMHLBZ
  51. Kontos MC, Anderson FP, Ornato JP, Tatum JL, Jesse RL. Utility of troponin I in patients with cocaine-associated chest pain. Acad Emerg Med. 2002;9(10):1007–1013. doi: 10.1111/j.1553-2712.2002.tb02134.x
  52. Skyttä T, Tuohinen S, Boman E, et al. Troponin T-release associates with cardiac radiation doses during adjuvant left-sided breast cancer radiotherapy. Radiat Oncol. 2015(10):141. doi: 10.1186/s13014-015-0436-2
  53. Donovan EK, Dhesy-Thind S, Swaminath A, et al. MEDiastinal Irradiation and CArdio-Toxic Effects (MEDICATE): Exploring the Relationship between Cardiac Irradiation and High Sensitivity Troponins. Clin Oncol (R Coll Radiol). 2019;31(7):479–485. doi: 10.1016/j.clon.2019.04.003
  54. Unlu S, Nurkoc SG, Sezenoz B, et al. Impact of statin use on high sensitive troponin T levels with moderate exercise. Acta Cardiol. 2019;74(5):380–385. doi: 10.1080/00015385.2018.1510801
  55. Sarzhevskii VO, Kolesnikova DS, Mel’nichenko VYa. Biochemical markers of cardiotoxicity of high-dose chemotherapy and autologous hematopoietic stem cell transplantation in patients with malignant lymphoproliferative disorders. Clinical Oncohematology. Basic Research and Clinical Practice. 2016;9(4):465–473. doi: 10.21320/2500-2139-2016-9-4-465-473
  56. Thavendiranathan P, Houbois C, Marwick TH, et al. Statins to prevent early cardiac dysfunction in cancer patients at increased cardiotoxicity risk receiving anthracyclines. Eur Heart J Cardiovasc Pharmacother. 2023;9(6):515–525. doi: 10.1093/ehjcvp/pvad031
  57. Taghdiri A. Cardiovascular biomarkers: exploring troponin and BNP applications in conditions related to carbon monoxide exposure. Egypt Heart J. 2024;76(1):9. doi: 10.1186/s43044-024-00446-w
  58. Osataphan N, Phrommintikul A, Leemasawat K, et al. Effects of metformin and donepezil on the prevention of doxorubicin-induced cardiotoxicity in breast cancer: a randomized controlled trial. Sci Rep. 2023;13(1):12759. doi: 10.1038/s41598-023-40061-4
  59. Demissei BG, Hubbard RA, Zhang L, et al. Changes in Cardiovascular Biomarkers With Breast Cancer Therapy and Associations With Cardiac Dysfunction. Journal of the American Heart Association. 2020;9(2):e014708. doi: 10.1161/JAHA.119.014708
  60. Nisticò C, Bria E, Cuppone F, et al. Troponin-T and myoglobin plus echocardiographic evaluation for monitoring early cardiotoxicity of weekly epirubicin-paclitaxel in metastatic breast cancer patients. Anticancer Drugs. 2007;18(2):227–232. doi: 10.1097/CAD.0b013e328011335e
  61. Trifonov IR. Biochemical markers of myocardial necrosis. Part 1. General characteristics of biomarkers. Their use for the diagnosis of myocardial infarction: a review of current recommendations. Cardiology. 2001(1):93–95.
  62. Sattarzadeh Badkoubeh R, Farajpour M, Salehi M, et al. Caspofungin-Induced Cardiotoxicity in Patients Treating for Candidemia. Toxics. 2022;31(10):521. doi: 10.3390/toxics10090521
  63. Shergill S. Mesalazine-induced myopericarditis: a case report. Eur Heart J Case Rep. 2020;5(2):ytaa508. doi: 10.1093/ehjcr/ytaa508
  64. Chen J, Duan T, Fang W, Liu S, Wang C. Analysis of clinical characteristics of mesalazine-induced cardiotoxicity. Front Pharmacol. 2022;13:970597. doi: 10.3389/fphar.2022.970597
  65. Shemirani H, Sadeghi M, Dehkordi AD, Gheshlaghi F. Is high sensitive-troponin I a reliable biomarker for cardiac injury in methadone toxicity? A prospective cross-sectional study. BMC Pharmacol Toxicol. 2022;23(1):17. doi: 10.1186/s40360-022-00558-6
  66. Lucyk SN. Acute Cardiovascular Toxicity of Cocaine. Can J Cardiol. 2022;38(9):1384–1394. doi: 10.1016/j.cjca.2022.05.003
  67. Gresnigt FMJ, Heikamp LK, Van Essen JJW, et al. Application of European Society of Cardiology guidelines for evaluating acute coronary syndrome risk in low-risk patients with cocaine-associated chest pain: Findings from the RISK study - An observational analysis. Toxicol Rep. 2024;13:101680. doi: 10.1016/j.toxrep.2024.05.010
  68. Riley ED, Hsue PY, Vittinghoff E, et al. Higher prevalence of detectable troponin I among cocaine-users without known cardiovascular disease. Drug Alcohol Depend. 2017;172:88–93. doi: 10.1016/j.drugalcdep.2016.11.039
  69. Kontos MC, Anderson FP, Ornato JP, Tatum JL, Jesse RL. Utility of troponin I in patients with cocaine-associated chest pain. Acad Emerg Med. 2002;9(10):1007–1013. doi: 10.1111/j.1553-2712.2002.tb02134.x
  70. Patel B, Omeh J, Tackling G, et al. The Clinical Association between Carbon Monoxide Poisoning and Myocardial Injury as Measured by Elevated Troponin I Levels. J Clin Med. 2023;12(17):5529. doi: 10.3390/jcm12175529
  71. Koga H, Tashiro H, Mukasa K, et al. Can indicators of myocardial damage predict carbon monoxide poisoning outcomes? BMC Emerg Med. 2021;21(1):7. doi: 10.1186/s12873-021-00405-7
  72. Pudil R. Detection of radiation induced cardiotoxicity: Role of echocardiography and biomarkers. Rep Pract Oncol Radiother. 2020;25(3):327–330. doi: 10.1016/j.rpor.2020.02.012
  73. Unger K, Li Y, Yeh C, et al. Plasma metabolite biomarkers predictive of radiation induced cardiotoxicity. Radiother Oncol. 2020(152):133–145. doi: 10.1016/j.radonc.2020.04.018
  74. Schiffer W, Pedersen LN, Lui M, Bergom C, Mitchell JD. Advances in Screening for Radiation-Associated Cardiotoxicity in Cancer Patients. Curr Cardiol Rep. 2023;25(11):1589–1600 doi: 10.1007/s11886-023-01971-x
  75. Curigliano G, Cardinale D, Suter T, et al. Cardiovascular toxicity induced by chemotherapy, targeted agents and radiotherapy: ESMO Clinical Practice Guidelines. Annals of Oncology. 2012;23:vii155–vii166. doi: 10.1093/annonc/mds293
  76. Snegovoy AV, Vitsenya MV, Kopp MV, Larionova VB. Practical recommendations for the correction of cardiovascular toxicity induced by chemotherapy and targeted drugs. Malignant Tumoursis. 2016(4):418–427. doi: 10.18027/2224-5057-2016-4s2-418-427
  77. Zamorano JL, Lancellotti P, Rodriguez MD, et al. 2016 ESC Position Paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC Committee for Practice Guidelines: the Task Force for cancer treatments and cardiovascular toxicity of the European Society of Cardiology (ESC). European Heart Journal. 2016;37(36):2768–2801. doi: 10.1093/eurheartj/ehw211
  78. Mitchell JD, Cehic DA, Morgia M, et al. Cardiovascular Manifestations From Therapeutic Radiation: A Multidisciplinary Expert Consensus Statement From the International Cardio-Oncology Society. JACC CardioOncol. 2021;3(3):360–380. doi: 10.1016/j.jaccao.2021.06.003
  79. Chazova IE, Ageev FT, Aksenova AV, et al. Eurasian clinical guidelines for cardiovascular complications of cancer treatments: diagnosis, prevention and treatment (2022). Eurasian heart journal. 2022;(1):6–79. doi: 10.38109/2225-1685-2022-1-6-79
  80. Smirnov MS, Dorofeykov VV, Golberg ND, Kurochkina EV. Myocardial damage biomarkers and the first case of macrotroponin I detection in endurance athletes. Acta biomedica scientifica. 2023;8(3):81–89. doi: 10.29413/ABS.2023-8.3.8

补充文件

附件文件
动作
1. JATS XML

版权所有 © Sheshurina T.A., Dorofeykov V.V., 2024

Creative Commons License
此作品已接受知识共享署名-非商业性使用-禁止演绎 4.0国际许可协议的许可。

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ:  ПИ № ФС 77 - 86785 от 05.02.2024 (ранее — ПИ № ФС 77 - 59057 от 22.08.2014).