Interrelation between the local acceleration of laminar flow in a channel and the anomalous heat transfer enhancement in inclined two-row grooves

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The anomalous enhancement of laminar separation flow and heat transfer (AELSFHT) is studied in a channel with two rows of 26 densely packed grooves inclined at angles of ±45о in the case of uniform flow at the entry and the Reynolds number Re varying from 1000 to 5500. The local flow acceleration is validated, when the greatest flow velocity becomes of the order of 1.8 in dimensionless units and the wall layer becomes thinner above the spherical entry segments. In this case, the longitudinal velocity increases to a value of 1.4 at a distance y = 0.005 from the wall for Re = 2500. The interrelation between the local acceleration at the channel center and the AELSFHT is established, the minimum value of the negative acceleration amounting to –25 at Re = 5500 and the relative heat removal from the structured region of the channel reaching up to 5.2.

About the authors

S. A. Isaev

St. Petersburg State Marine Technical University; St. Petersburg State University of Civil Aviation; Scientific and Production Implementation Company “Turbokon”

Author for correspondence.
Email: isaev3612@yandex.ru
Russian Federation, St. Petersburg; St. Petersburg; Kaluga

O. O. Mil’man

Scientific and Production Implementation Company “Turbokon”

Email: isaev3612@yandex.ru
Russian Federation, Kaluga

N. I. Mikheev

Kazan Scientific Center of the Russian Academy of Sciences

Email: isaev3612@yandex.ru
Russian Federation, Kazan

D. V. Nikushchenko

St. Petersburg State Marine Technical University

Email: isaev3612@yandex.ru
Russian Federation, St. Petersburg

N. S. Dushin

Kazan Scientific Center of the Russian Academy of Sciences

Email: isaev3612@yandex.ru
Russian Federation, Kazan

A. A. Klyus

St. Petersburg State University of Civil Aviation

Email: isaev3612@yandex.ru
Russian Federation, St. Petersburg

E. A. Osiyuk

St. Petersburg State University of Civil Aviation

Email: isaev3612@yandex.ru
Russian Federation, St. Petersburg

References

  1. Milman O., Ananiev P. Dry сoolers and air-condensing units (Review) // Thermal Eng. 2016. V.63. P. 157–167.
  2. Gao J., Hu Z., Yang Q., Liang X., Wu H. Fluid flow and heat transfer in microchannel heat sinks: modelling review and recent progress // Thermal Science and Engineering Progress. 2022. V.29. p.101203.
  3. Dzyubenko B., Kuzma-Kichta Yu., Leontiev A., Fedik I., Kholpanov L. Intensification of heat and mass transfer on macro-, micro-, and nanoscales. Begell House, 2016. 630p
  4. Kalinin E.K., Dreitser G.A., Kopp I.Z., Myakotchin A.S. Efficient surfaces for heat exchangers: fundamental and design. Begell house. 2002. 392p.
  5. Rashidi S., Hormozi F., Sunden B., Mahian O. Energy saving in thermal energy systems using dimpled surface technology – A review on mechanisms and applications // Appl. Energy. 2019. V.250. P. 1491–1547.
  6. Wei X.J., Joshi Y.K., Ligrani P.M. Numerical simulation of laminar flow and heat transfer inside a microchannel with one dimpled surface // Journal of Electronic Packaging. 2007. V. 129. № 1. P. 63–70.
  7. Xu M., Lu H., Gong L., Chai J.C., Duan X. Parametric numerical study of the flow and heat transfer in microchannel with dimples // International Communications in Heat and Mass Transfer. 2016. V.76. P. 348–357.
  8. Park D.S. Experimental and numerical study of laminar forced convection heat transfer for a dimpled heat sink // Thesis of Master of Science. Texas A&M University. 2007. 60 p.
  9. Bi C., Tang G.H., Tao W.Q. Heat transfer enhancement in mini-channel heat sinks with dimples and cylindrical grooves // Applied Thermal Engineering. 2013. V.55. p.121–132.
  10. Lu G., Zhai X. Analysis on heat transfer and pressure drop of a microchannel heat sink with dimples and vortex generators // International journal of thermal sciences. 2019. V.145. p.105986.
  11. Isaev S.A., Leonardi E., Timchenko V., Usachov A.E. Vortical investigation of heat transfer in microchannels with oval dimples // Heat Transfer Research. 2010. V. 41. № 4. p. 413–424.
  12. Исаев С.А., Леонтьев А.И., Готовский М.А., Усачов А.Е., Жукова Ю.В. Анализ повышения теплогидравлической эффективности при движении трансформаторного масла в миниканале с однорядным пакетом сферических и овальных лунок на нагретой стенке // Теплофизика высоких температур. 2013. Т. 51. № 6. С. 884–890.
  13. Isaev S.A., Leontiev A.I., Gotovskii M.A., Usachov A.E., Zhukova Yu.V. Analysis of thermohydraulic efficiency increase during transformer oil flow in a minichannel with a single-row package of spherical and oval dimples at a heated wall // High Temperature. 2013. V. 51. No. 6. P. 804–809.
  14. Исаев С.А., Леонтьев А.И., Корнев Н.В., Хассель Э., Чудновский Я.П. Интенсификация теплообмена при ламинарном и турбулентном течении в узком канале с однорядными овальными лунками // Теплофизика высоких температур. 2015. Т. 53. № 3. С. 390–402.
  15. Isaev S.A., Leontiev A.I., Kornev N.V., Hassel E., and Chudnovskii Ja.P. Heat transfer intensification for laminar and turbulent flows in a narrow channel with one-row oval dimples // High Temperature. 2015. V.53. № .3 P. 375–386.
  16. Исаев С.А. Генезис аномальной интенсификации отрывного течения и теплообмена в наклонных канавках на структурированных поверхностях //ИЗВ.РАН. Механика жидкости и газа. 2022. № 5. С. 13–24.
  17. Isaev S.A. Genesis of anomalous intensification of separation flow and heat transfer in inclined grooves on structured surfaces // Fluid Dynamics. 2022. V. 57. № .5. P. 558–570.
  18. Isaev S., Gritckevich М., Leontiev А., Popov I. Abnormal enhancement of separated turbulent air flow and heat transfer in inclined single-row oval-trench dimples at the narrow channel wall // Acta Astronautica. 2019. Vl. 163 (Part.A). P. 202–207.
  19. Исаев С.А., Баранов П.А., Леонтьев А.И., Попов И.А. Интенсификация ламинарного течения в узком микроканале с однорядными наклоненными овально-траншейными лунками // Письма в ЖТФ. 2018. Т. 44. Вып. 9. С. 73–80.
  20. Isaev S.A., Baranov P.A., Leontiev A.I., Popov I.A. Intensification of a laminar flow in a narrow microchannel with single-row inclined oval-trench dimples // Technical Physics Letters. 2018. V. 44. № 5. P. 398–400.
  21. Исаев С.А., Леонтьев А.И., Мильман О.О., Судаков А.Г., Усачов А.Е., Гульцова М.Е. Интенсификация теплообмена при ламинарном вихревом течении воздуха в узком канале с однорядными наклоненными овальными лунками // Инж.-физ. журн. 2018. Т. 91. № 4. С. 1022–1034.
  22. Isaev S.A., Leont’ev A.I., Mil’man O.O., Sudakov A.G., Usachov A.E., Gul’tsova M.E. Intensification of heat exchange in laminar vortex air flow in a narrow channel with a row of inclined oval trenches // J. Eng. Physics and Thermophys. 2018. V. 91. № 4. P. 963–974.
  23. Isaev S.A., Leontiev A.I., Milman O.O., Popov I.A., Sudakov A.G. Influence of the depth of single row oval-trench dimples inclined to laminar air flow on heat transfer enhancement in a narrow micro- channel // Int. J. Heat and Mass Transfer. 2019. V. 134. P. 338–358.
  24. Исаев С.А., Леонтьев А.И., Мильман О.О., Никущенко Д.В., Попов И.А. Энергоэффективные поверхности с многорядными наклонными овально-траншейными лунками для воздушных конденсаторов // Энергетика. 2020. № 4. С. 3–10.
  25. Михеев Н.И., Душин Н.С. Метод измерения динамики векторных полей скорости турбулентного потока по видеосъемке дымовой визуализации // Приборы и техника эксперимента. 2016. № 6. С. 114–122.
  26. Mikheev N.I., Dushin N.S. A method for measuring the dynamics of velocity vector fields in a turbulent flow using smoke image-visualization video // Instruments and Experimental Techniques. 2016. V. 59. № 6. P. 882–889.
  27. Исаев С.А., Баранов П.А., Усачов А.Е. Многоблочные вычислительные технологии в пакете VP2/3 по аэротермодинамике. Саарбрюкен: LAP LAMBERT Academic Publishing. 2013. 316с.
  28. Isaev S.A., Baranov P.A., Usachov A.E. Multiblock computational technologies in the VP2/3 package on aerothermodynamics (LAP LAMBERT Academic Publishing: Saarbrucken, Germany, 2013).
  29. Van Doormaal J.P., Raithby G.D. Enhancement of the SIMPLE method for predicting incompressible fluid flow // Numerical Heat Transfer. 1984. V. 7. № 2. P. 147.
  30. Leonard B.P. A stable and accurate convective modeling procedure based on quadratic upstream interpolation // Comp. Meth. Appl. Mech. Eng. 1979. V. 19. № 1. P. 59–98.
  31. Rhie C.M., Chow W.L. A numerical study of the turbulent flow past an isolated airfoil with trailing edge separation // AIAA J. 1983. V. 21. P. 1525.
  32. Pascau A., Garcia N. Consistency of SIMPLEC scheme in collocated grids // Proc. V European Conf. on Computational Fluid Dynamics ECCOMAS CFD2010. Lisbon, Portugal, 2010. 12p.
  33. Saad Y. Iterative methods for sparse linear systems. 2nd ed., Society for Industrial and Applied Mathematics, Philadelphia, 2003. 567p.
  34. Demidov D. AMGCL: C++ library for solving large sparse linear systems with algebraic multigrid method. http://amgcl.readthedocs.org/.
  35. Исаев С.А., Судаков А.Г., Баранов П.А., Жукова Ю.В., Усачов А.Е. Анализ погрешностей многоблочных вычислительных технологий при расчете циркуляционного течения в квадратной каверне с подвижной крышкой для Re=1000 // Инж.-физ. журнал. 2013. Т. 86. № 5. С. 1064–1079.
  36. Isaev S.A., Sudakov A.G., Baranov P.A., Zhukova Yu.V., Usachov A.E. Analysis of errors of multiblock computational technologies by the example of calculating a circulation flow in a square cavity with a moving cover at Re = 1000 // J. Eng. Physics and Thermophysics. 2013. V. 86, Issue 5. P. 1134–1150.
  37. Isaev S.A., Kornev N.V., Leontiev A.I., Hassel E. Influence of the Reynolds number and the spherical dimple depth on the turbulent heat transfer and hydraulic loss in a narrow channel // Int. J. Heat Mass Transfer. 2010. V.53. № 1–3. P. 178.
  38. Herwig H., Kock F. Direct and indirect methods of calculating entropy generation rates in turbulent convective heat transfer problems // Heat Mass Transfer. 2007. V. 43. P. 207–215.
  39. Isaev S.A., Mil’man O.O., Klyus A.A., Nikushchenko D.V., Khmara D.S., Yunakov L.P. Anomalous heat transfer enhancement in separated flow over a zigzag-shaped dense package of inclined grooves in a channel wall at different temperature boundary conditions // Fluid Dynamics. 2024. V. 59. № 2. P. 238–259.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences