Development of stationary disturbances in a spatially developing jet

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Nonmodal development of stationary three-dimensional disturbances in a circular jet is numerically investigated at the Reynolds number Re = 2850. The operating conditions of a laboratory experiment performed earlier in the Institute of Mechanics of Moscow State University are reproduced. A method for calculating optimal disturbances under the conditions of downstream developing main flow is developed. The disturbances associated with different azimuthal numbers are calculated. The shape, character of development, and growth degree of optimal disturbances are determined.

Sobre autores

D. Ashurov

Moscow State University, Institute of Mechanics

Autor responsável pela correspondência
Email: ashurovda@my.msu.ru
Rússia, Moscow

N. Nikitin

Moscow State University, Institute of Mechanics

Email: nvnikitin@mail.ru
Rússia, Moscow

Bibliografia

  1. Morris P.J. The spatial viscous instability of axisymmetric jets // J. Fluid Mech. 1976. V. 77. 3. P. 511–529.
  2. Michalke A. Survey on jet instability theory // Prog. Aerospace Sci. 1984. V. 21. P. 159–199.
  3. Грек Г.Р., Козлов В.В., Литвиненко Ю.А. Устойчивость дозвуковых струйных течений // Учебное пособие: Новосиб. гос. ун-т. Новосибирск. 2012. 208 с.
  4. Zayko J., Teplovodskii S., Chicherina A., Vedeneev V., Reshmin A. Formation of free round jets with long laminar regions at large Reynolds numbers // Phys. Fluids. 2018. V 30. P. 043603.
  5. Зайко Ю.С., Решмин А.И., Тепловодский С.Х., Чичерина А.Д. Исследование затопленных струй с увеличенной длиной начального ламинарного участка // Изв. РАН. МЖГ. 2018. 1. С. 97–106.
  6. Ellingsen T., Palm E. Stability of linear flow // Phys. Fluids. 1975. V 18. P. 487–488.
  7. Landahl M.L. A note on algebraic instability of inviscid parallel shear flows // J. Fluid Mech. 1980. V. 98. P. 243–251.
  8. Schmid P.J., Henningson D.S. Optimal energy density growth in Hagen–Poiseuille flow // J. Fluid Mech. 1994. V. 277. P. 197–225.
  9. Andersson P., Berggren M., Henningson D.S. Optimal disturbances and bypass transition in boundary layers // Phys. Fluids. 1999. V 11. P. 134–150.
  10. Luchini P. Reynolds-number-independent instability of the boundary layer over a flat surface: optimal perturbations // J. Fluid Mech. 2000. V. 404. P. 289–309.
  11. Tumin A., Reshotko E. Spatial theory of optimal disturbances in boundary layers // Phys. Fluids. 2001. V 13. P. 2097–2104.
  12. Reshotko E., Tumin A. Spatial theory of optimal disturbances in a circular pipe flow // Phys. Fluids. 2001. V 13. P. 991–996.
  13. Boronin S.A., Healey J.J., Sazhin S.S. Non-modal stabillity of round viscous jets // J. Fluid Mech. 2013. V. 716. P. 96–119.
  14. Jimenez-Gonzalez J. I., Brancher P., Martinez-Bazan C. Modal and non-modal evolution of perturbations for parallel round jets // Phys. Fluids. 2015. V 27. P. 044105.
  15. Jimenez-Gonzalez J. I., Brancher P. Transient energy growth of optimal streaks in parallel round jets // Phys. Fluids. 2017. V 29. P. 114101.
  16. Боронин С.А., Осипцов А.Н. Модальная и немодальная неустойчивость течения запыленного газа в пограничном слое // Изв. РАН. МЖГ. 2014. 6. С. 80–93.
  17. Калашник М.В., Чхетиани О.Г. Оптимальные возмущения в развитии неустойчивости свободного слоя сдвига и системы из двух встречных струйных течений // Изв. РАН. МЖГ. 2020. 2. С. 28–41.
  18. Ivanov O., Ashurov D., Gareev L., Vedeneev V. Non-modal perturbation growth in a laminar jet: an experimental study // J. Fluid Mech. 2023. V. 963. P. A8.
  19. Wang C., Lesshafft L., Cavalieri A.V., Jordan P. The effect of streaks on the instability of jets // J. Fluid Mech. 2021. V. 910. P. A14.
  20. Nikitin N. Finite-difference method for incompressible Navier–Stokes equations in arbitrary orthogonal curvilinear coordinates // J. Comput. Phys. 2006. V. 217. P. 759–781.
  21. Абдульманов К.Э., Никитин Н.В. Развитие возмущений в круглой затопленной струе с двумя модами неустойчивости // Изв. РАН. МЖГ. 2022. 5. С. 25–40.
  22. Gareev L.R., Zayko J.S., Chicherina A.D., Trifonov V.V., Reshmin A.I., Vedeneev V.V. Experimental validation of inviscid linear stability theory applied to an axisymmetric jet // J. Fluid Mech. 2022. V 934. A3.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2024