INSTABILITY OF THE FLOW IN A PLANE CHANNEL WITH COMPLIANT WALLS OF FINITE THICKNESS
- Authors: Boiko A.V1, Golub E.S1,2, Chupakhin A.P2
-
Affiliations:
- Institute of Theoretical and Applied Mechanics of the Siberian Branch of the Russian Academy of Sciences
- Institute of Hydrodynamics of the Siberian Branch of the Russian Academy of Sciences
- Issue: No 2 (2025)
- Pages: 40-51
- Section: Articles
- URL: https://kld-journal.fedlab.ru/1024-7084/article/view/687729
- DOI: https://doi.org/10.31857/S1024708425020043
- EDN: https://elibrary.ru/FVRFFO
- ID: 687729
Cite item
Abstract
The model of the stability of viscous incompressible flow in a channel with thick compliant walls is developed and studied under the assumption of the disturbance smallness. The eigenvalue problem thus obtained is solved numerically using the collocation method. The calculations are carried out for several viscoelastic materials. Some new results concerning the effect of the wall thickness and the characteristic flow velocity on the flow stability are obtained. The effect of viscoelastic properties of the channel wall material on the suppression of the Tollmien–Schlichting instability is estimated.
About the authors
A. V Boiko
Institute of Theoretical and Applied Mechanics of the Siberian Branch of the Russian Academy of SciencesNovosibirsk, Russia
E. S Golub
Institute of Theoretical and Applied Mechanics of the Siberian Branch of the Russian Academy of Sciences; Institute of Hydrodynamics of the Siberian Branch of the Russian Academy of Sciences
Email: e.golub@g.nsu.ru
Novosibirsk, Russia; Novosibirsk, Russia
A. P Chupakhin
Institute of Hydrodynamics of the Siberian Branch of the Russian Academy of SciencesNovosibirsk, Russia
References
- Kramer M.O. Boundary layer stabilization by distributed damping // JAS. 1957. V. 24. P. 459–460.
- Xia Q.J., Huang W.X., Xu C.X. Direct numerical simulation of a turbulent boundary layer over an anisotropic compliant wall // Acta. Mech. Sin. 2019. V. 35. P. 384–400. https://doi.org/10.1007/s10409-018-0820-x
- Musleh A.A., Frendi A. On the effects of a flexible structure on boundary layer stability and transition // J. Fluids Eng. 2011. V. 133. No. 7. https://doi.org/10.1115/1.4004490
- Avila M., Barkley D., Hof B. Transition to turbulence in pipe flow // Annu. Rev. Fluid Mech. 2023. V. 55. No. 1. P. 575–602. https://doi.org/10.1146/annurev-fluid-120720-025957
- Веденеев В.В. Одномодовый флаттер пластины с учетом пограничного слоя // Изв. РАН. МЖГ. 2012. № 3. С. 147–160.
- Kumaran V. Stability and the transition to turbulence in the flow through conduits with compliant walls // J. Fluid Mech. 2021. V. 924. P1. https://doi.org/10.1017/jfm.2021.602
- Carpenter P.W., Gajjar J.S.B. A general theory for two-and three-dimensional wall-mode instabilities in boundary layers over isotropic and anisotropic compliant walls // Theoret. Comput. Fluid Dyn. 1990. V. 1. No. 6. P. 349–378. https://doi.org/10.1007/bf00271796
- Gad-el-Hak M. Compliant coatings: a decade of progress // Appl. Mech. Rev. 1996. V. 49. No. 10S. https://doi.org/10.1115/1.3101966
- Squires T.M., Quake S.R. Microfluidics: Fluid physics at the nanoliter scale // Rev. Mod. Phys. 2005. V. 77. No. 3. P. 977–1026. https://doi.org/10.1103/RevModPhys.77.977
- Eggert M.D., Kumar S. Observations of instability, hysteresis, and oscillation in low-Reynolds-number flow past polymer gels // J. Colloid Interface Sci. 2004. V. 278. No. 1. P. 234–242. https://doi.org/10.1016/j.jcis.2004.05.043
- Mehdari A., Agouzoul M. and Hasnaoui M. Analytical Modeling For Newtonian Fluid Flow through an Elastic Tube // JMEA. 2018. V. 8. No. 1. P. 25–29. https://doi.org/10.29354/diag/81237.
- Benjamin T.B. The threefold classification of unstable disturbances in flexible surfaces bounding inviscid flows // J. Fluid Mech. 1963. V. 16. No. 3. P. 436–450. https://doi.org/10.1017/S0022112063000884
- Landahl M.T. On the stability of a laminar incompressible boundary layer over a flexible surface // J. Fluid Mech. 1962. V. 13. No. 4. P. 609–632.
- Patne R., Shankar V. Stability of flow through deformable channels and tubes: implications of consistent formulation // J. Fluid Mech. 2019. V. 860. P. 837–885. https://doi.org/10.1017/jfm.2018.908
- Heil M., Hazel A.L. Fluid-structure interaction in internal physiological flows // Annu. Rev. Fluid Mech. 2011. V. 43. No. 1. P. 141–162. https://doi.org/10.1146/annurev-fluid-122109-160703
- Pedley T.J., Pihler-Puzovic D. Flow and oscillations in collapsible tubes: Physiological applications and lowdimensional models // Sadhana. 2015. V. 40. № 3. P. 891–909. https://doi.org/10.1007/s12046-015-0363-9.
- Grotberg J.B., Jensen O.E. Biofluid mechanics in flexible tubes // Annu. Rev. Fluid Mech. 2004. V. 36. No. 1. P. 121–147. https://doi.org/10.1146/annurev.fluid.36.050802.121918
- Бойко А.В. О моделировании устойчивости течений жидкости в податливых трубах применительно к задачам гемодинамики // Вестн. Новосиб. гос. ун-та. Сер. Физика. 2015. Т. 10. № 4. С. 29–42.
- Ганиев Р.Ф., Украинский Л.Е., Устенко И.Г. О стабилизации малых возмущений течения Пуазейля в канале с упругими стенками // Изв. АН СССР. МЖГ. 1988. № 3. С. 67–72.
- Бойко А.В., Кулик В.М. Устойчивость пограничного слоя плоской пластины над монолитными вязкоупругими покрытиями // Докл. РАН. 2012. Т. 445. № 3. С. 283–285.
- Даржаин А.Э., Бойко А.В., Кулик В.М., Чупахин А.П. Анализ устойчивости пограничного слоя плоской пластины над двухслойным податливым покрытием конечной толщины // ПМТФ. 2019. Т. 60, № 4. С. 35–46.
- Stewart P.S., Waters S.L., Jensen O.E. Local and global instabilities of flow in a flexible-walled channel // Eur. J. Mech. B-Fluids. 2009. V. 28. № 4. P. 541–557. https://doi.org/10.1016/j.euromechflu.2009.03.002
- Stewart P.S., Waters S.L., Jensen O.E. Local instabilities of flow in a flexible channel: Asymmetric flutter driven by a weak critical layer // Phys. Fluids. 2010. V. 22. № 3. https://doi.org/10.1063/1.3337824
- Boiko A.V., Demyanko K.V. On numerical stability analysis of fluid flows in compliant pipes of elliptic cross-section // J. Fluids. Struct. 2022. V. 108. P. 103414. https://doi.org/10.1016/j.jfluidstructs.2021.103414
- Lebbal S., Alizard F., Pier B. Revisiting the linear instabilities of plane channel flow between compliant walls // Phys. Rev. Fluids. 2022. V. 7. No. 2. P. 023903. https://doi.org/10.1103/PhysRevFluids.7.023903
- Бойко А.В., Грек Г.Р., Довгаль А.В., Козлов В.В. Физические механизмы перехода к турбулентности в открытых течениях. М.: Ижевск: НИЦ “Регулярная и хаотическая динамика”, Институт компьютерных исследований, 2006. 304с.
- Weideman J.A.C., Reddy S.C. A MATLAB Differentiation Matrix Suite // ACM Trans. Math. Softw. 2000. V. 26. No. 4. P. 465–519. https://doi.org/10.1145/365723.365727
- Yeo K.S. The stability of boundary-layer flow over single- and multi-layer viscoelastic walls // J. Fluid Mech. 1988. V. 196. P. 359–408. https://doi.org/10.1017/S0022112088002745
Supplementary files
