Non-coding RNAs involved in the regulation of signaling pathways as possible markers of non-alcoholic fatty liver disease progression
- Authors: Topchieva L.I.1, Zhulay G.A.1, Kurbatova I.V.1, Dudanova O.P.2, Vasilyeva A.V.1
-
Affiliations:
- Karelian Research Centre of the Russian Academy of Sciences
- Petrozavodsk State University
- Issue: No 5 (2024)
- Pages: 562–584
- Section: ГЕНЕТИКА
- URL: https://kld-journal.fedlab.ru/1026-3470/article/view/647782
- DOI: https://doi.org/10.31857/S1026347024050023
- EDN: https://elibrary.ru/ulvknd
- ID: 647782
Cite item
Full Text
Abstract
The current understanding of the role of non-coding RNAs in the regulation of signaling pathways that control lipid accumulation and the development of inflammation in non-alcoholic fatty liver disease (NAFLD) is outlined. The contribution of peroxisome proliferator-activated receptors (PPARs) to changes in lipid metabolism and the formation of lipotoxicity as trigger mechanisms of NAFLD is considered. The role of TGFβ, TNFα/NF-κb, IL-6/JAK/STAT3 signaling pathways in the activation of stellate cells, liver fibrogenesis and the progression of NAFLD has been demonstrated. Analysis of literature data has revealed a number of microRNAs and long non-coding RNAs (lncRNAs), the expression of which may be associated with the regulation of these signaling pathways in this disease. They may probably have prognostic significance for differentiating clinical forms and severity of NAFLD.
Full Text

About the authors
L. I. Topchieva
Karelian Research Centre of the Russian Academy of Sciences
Author for correspondence.
Email: topchieva67@mail.ru
198910, Petrozavodsk, st. Pushkinskaya, 11
G. A. Zhulay
Karelian Research Centre of the Russian Academy of Sciences
Email: topchieva67@mail.ru
Russian Federation, 198910, Petrozavodsk, st. Pushkinskaya, 11
I. V. Kurbatova
Karelian Research Centre of the Russian Academy of Sciences
Email: topchieva67@mail.ru
Russian Federation, 198910, Petrozavodsk, st. Pushkinskaya, 11
O. P. Dudanova
Petrozavodsk State University
Email: topchieva67@mail.ru
Russian Federation, 185910, Petrozavodsk, st. Lenina, 33
A. V. Vasilyeva
Karelian Research Centre of the Russian Academy of Sciences
Email: topchieva67@mail.ru
Russian Federation, 198910, Petrozavodsk, st. Pushkinskaya, 11
References
- Курбатова И. В., Дуданова О. П. Особенности некротически-воспалительного процесса при разных формах неалкогольной жировой болезни печени. Терапевтический архив. 2017. Вып. 89, № 2. С. 52–58. doi: 10.17116/terarkh201789252-58
- Курбатова И. В., Топчиева Л. В., Дуданова О. П., Шиповская А. А. Роль растворимого рецептора интерлейкина-6 в прогрессировании неалкогольной жировой болезни печени. Бюллетень экспериментальной биологии и медицины. 2023. Вып. 174, № 5. С. 628–633. doi: 10.47056/0365-9615-2022-174-11-585-591
- Лазебник Л. Б., Голованова Е. В., Туркина С. В., Райхельсон К. Л., Оковитый С. В., Драпкина О. М., Маев И. В., Мартынов А. И., Ройтберг Г. Е., Хлынова О. В., Абдулганиева Д. И., Алексеенко С. А., Ардатская М. Д., Бакулин И. Г., Бакулина Н. В., Буеверов А. О., Виницкая Е. В., Волынец Г. В., Еремина Е. Ю., Гриневич В. Б., Долгушина А. И., Казюлин А. Н., Кашкина Е. И., Козлова И. В., Конев Ю. В., Корочанская Н. В., Кравчук Ю. А., Ли Е. Д., Лоранская И. Д., Махов В. М., Мехтиев С. Н., Новикова В. П., Остроумова О. Д., Павлов Ч. С., Радченко В. Г., Самсонов А. А., Сарсенбаева А. С., Сайфутдинов Р. Г., Селиверстов П. В., Ситкин С. И., Стефанюк О. В., Тарасова Л. В., Ткаченко Е. И., Успенский Ю. П., Фоминых Ю. А., Хавкин А. И., Цыганова Ю. В., Шархун О. О. Неалкогольная жировая болезнь печени у взрослых: клиника, диагностика, лечение. Рекомендации для терапевтов, третья версия.Экспериментальная и клиническая гастроэнтерология. 2021. Вып. 185, № 1. С. 4–52. doi: 10.31146/1682-8658-ecg-185-1-4-52
- Маевская М. В., Котовская Ю. В., Ивашкин В. Т., Ткачева О. Н., Трошина Е. А., Шестакова М. В., Бредер В. В., Гейвандова Н. И., Дощицин В. Л., Дудинская Е. Н., Ершова Е. В., Кодзоева Х. Б., Комшилова К. А., Корочанская Н. В., Майоров А. Ю., Мишина Е. Е., Надинская М. Ю., Никитин И. Г., Погосова Н. В., Тарзиманова А. И., Шамхалова М. Ш. Консенсус для врачей по ведению взрослых пациентов с неалкогольной жировой болезнью печени и ее основными коморбидными состояниями. Терапевтический архив. 2022. Вып. 94, № 2. С. 216–253. doi: 10.26442/00403660.2022.02.201363
- Циммерман Я. С. Фиброз печени: патогенез, методы диагностики, перспективы лечения. Клиническая фармакология и терапия. 2017.Вып l. 26, № 1. С. 54–58.
- Albadawy R., Agwa S. H. A., Khairy E., Saad M., El Touchy N., Othman M., El Kassas M., Matboli M. Circulatory Endothelin 1-Regulating RNAs Panel: Promising Biomarkers for Non-Invasive NAFLD/NASH Diagnosis and Stratification: Clinical and Molecular Pilot Study // Genes. 2021a. Vol. 12, № 11. P. 1813. doi: 10.3390/genes12111813.
- Albadawy R., Agwa S. H. A., Khairy E., Saad M., El Touchy N., Othman M., Matboli M. Clinical Significance of HSPD1/MMP14/ITGB1/miR-6881-5P/Lnc-SPARCL1-1:2 RNA Panel in NAFLD/NASH Diagnosis: Egyptian Pilot Study // Biomedicines. 2021b. Vol. 9, № 9. P. 1248. doi: 10.3390/biomedicines9091248.
- Atanasovska B., Rensen S. S., Marsman G., Shiri-Sverdlov R., Withoff S., Kuipers F., Wijmenga C., Van De Sluis B., Fu J. Long Non-Coding RNAs Involved in Progression of Non-Alcoholic Fatty Liver Disease to Steatohepatitis // Cells. 2021. Vol. 10, № 8. P. 1883. doi: 10.3390/cells10081883.
- Baffy G. MicroRNAs in Nonalcoholic Fatty Liver Disease // J. Clin. Med. 2015. Vol. 4, № 12. P. 1977–1988. doi: 10.3390/jcm4121953
- Bartel D. P. MicroRNAs: Target Recognition and Regulatory Functions // Cell. 2009. Vol. 136, № 2. P. 215–233. doi: 10.1016/j.cell.2009.01.002
- Belloni L., Di Cocco S., Guerrieri F., Nunn A. D. G., Piconese S., Salerno D., Testoni B., Pulito C., Mori F., Pallocca M., Sacconi A., Vivoli E., Marra F., Strano S., Blandino G., Levrero M., Pediconi N.Targeting a phospho-STAT3-miRNAs pathway improves vesicular hepatic steatosis in an in vitro and in vivo model // Sci. Rep. 2018. Vol. 8, № 1. P. 13638. doi: 10.1038/s41598-018-31835-2
- Bettelli E., Carrier Y., Gao W., Korn T., Strom T. B., Oukka M., Weiner H. L., Kuchroo V. K. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells // Nature. 2006. Vol. 441, № 7090. P. 235–238. doi: 10.1038/nature04753
- Bhan A., Mandal S. S. LncRNA HOTAIR: A master regulator of chromatin dynamics and cancer // Biochim. Biophys. Acta BBA – Rev. Cancer. 2015. Vol. 1856, № 1. P. 151–164. doi: 10.1016/j.bbcan.2015.07.001
- Brock M., Trenkmann M., Gay R. E., Gay S., Speich R., Huber L. C. MicroRNA-18a Enhances the Interleukin-6-mediated Production of the Acute-phase Proteins Fibrinogen and Haptoglobin in Human Hepatocytes // J. Biol. Chem. 2011. Vol. 286, № 46. P. 40142–40150. doi: 10.1074/jbc.M111.251793
- Bu, F., Wang, A., Zhu, Y., You, H., Zhang, Y., Meng, X., Huang, C., Li, J. LncRNA NEAT1: Shedding light on mechanisms and opportunities in liver diseases // Liver Int. 2020. Vol. 40, № 11. P. 2612–2626. doi: 10.1111/liv.14629
- Candido S., Tomasello B. M. R., Lavoro A., Falzone L., Gattuso G., Libra M.Novel Insights into Epigenetic Regulation of IL6 Pathway: In Silico Perspective on Inflammation and Cancer Relationship // Int. J. Mol. Sci. 2021. Vol. 22, № 18. P. 10172. doi: 10.3390/ijms221810172
- Cao Q., Li Y.-Y., He W.-F., Zhang Z.-Z., Zhou Q., Liu X., Shen Y., Huang, T.-T. Interplay between microRNAs and the STAT3 signaling pathway in human cancers // Physiol. Genomics. 2013. Vol. 45, № 24. P. 1206–1214. doi: 10.1152/physiolgenomics.00122.2013
- Cermelli S., Ruggieri A., Marrero J. A., Ioannou G. N., Beretta L. Circulating MicroRNAs in Patients with Chronic Hepatitis C and Non-Alcoholic Fatty Liver Disease // PLoS ONE / ed. Tavis J. E. 2011. Vol. 6, № 8. P. e23937. doi: 10.1371/journal.pone.0023937
- Chen J., Gu X., Zhou L., Wang S., Zhu L., Huang Y., Cao F. Long non coding RNA HOTAIR promotes the progression of sepsis by acting as a sponge of miR211 to induce IL 6R expression // Exp. Ther. Med. 2019. doi: 10.3892/etm.2019.8063
- Chen S., Zhang J., Chen Q., Cheng J., Chen X., Mao Y., Chen W., Liu C., Wu H., Lv Y., & Lin Y. MicroRNA 200a and microRNA 141 have a synergetic effect on the suppression of epithelial mesenchymal transition in liver cancer by targeting STAT4 // Oncol. Lett. 2020. Vol. 21, № 2. P. 137. doi: 10.3892/ol.2020.12398
- Chomarat P., Banchereau J., Davoust J., Karolina Palucka A. IL-6 switches the differentiation of monocytes from dendritic cells to macrophages // Nat. Immunol. 2000. Vol. 1, № 6. P. 510–514. doi: 10.1038/82763
- Chu Y., Bao L., Teng Y., Yuan B., Ma L., Liu Y., Kang H. The Fibrotic Effects of LINC00663 in Human Hepatic Stellate LX-2 Cells and in Bile Duct-Ligated Cholestasis Mice Are Mediated through the Splicing Factor 2-Fibronectin // Cells. 2023. Vol. 12, № 2. P. 215. doi: 10.3390/cells12020215
- Correia De Sousa M., Calo N., Sobolewski C., Gjorgjieva M., Clément S., Maeder C., Dolicka D., Fournier M., Vinet L., Montet X., Dufour J.-F., Humar B., Negro F., Sempoux C., Foti M. Mir-21 Suppression Promotes Mouse Hepatocarcinogenesis // Cancers. 2021. Vol. 13, № 19. P. 4983. doi: 10.3390/cancers13194983
- Crespo J. Gene expression of tumor necrosis factor [alpha ] and TNF-receptors, p55 and p75, in nonalcoholic steatohepatitis patients // Hepatology. 2001. Vol. 34, № 6. P. 1158–1163. doi: 10.1053/jhep.2001.29628
- Csak T., Bala S., Lippai D., Kodys K., Catalano D., Iracheta-Vellve A., Szabo G. MicroRNA-155 Deficiency Attenuates Liver Steatosis and Fibrosis without Reducing Inflammation in a Mouse Model of Steatohepatitis // PLOS ONE / ed. Aldabe R. 2015. Vol. 10, № 6. P. e0129251. doi: 10.1371/journal.pone.0129251
- Cui S., Liu Z., Tao B., Fan S., Pu Y., Meng X., Li D., Xia H., Xu L. miR‐145 attenuates cardiac fibrosis through the AKT/GSK‐3β/β‐catenin signaling pathway by directly targeting SOX9 in fibroblasts // J. Cell. Biochem. 2021. Vol. 122, № 2. P. 209–221. doi: 10.1002/jcb.29843
- Di Mauro S., Salomone F., Scamporrino A., Filippello A., Morisco F., Guido M., Lembo V., Cossiga V., Pipitone R., Grimaudo S., Malaguarnera R., Purrello F., Piro S. Coffee Restores Expression of lncRNAs Involved in Steatosis and Fibrosis in a Mouse Model of NAFLD // Nutrients. 2021. Vol. 13, № 9. P. 2952. doi: 10.3390/nu13092952
- Diehl S., Anguita J., Hoffmeyer A., Zapton T., Ihle J. N., Fikrig E., Rincón M. Inhibition of Th1 Differentiation by IL-6 Is Mediated by SOCS1 // Immunity. 2000. Vol. 13, № 6. P. 805–815. doi: 10.1016/s1074-7613(00)00078-9
- Dienz O., Eaton S. M., Bond J. P., Neveu W., Moquin D., Noubade R., Briso E. M., Charland C., Leonard W. J., Ciliberto G., Teuscher C., Haynes L., Rincon M. The induction of antibody production by IL-6 is indirectly mediated by IL-21 produced by CD4+ T cells // J. Exp. Med. 2009. Vol. 206, № 1. P. 69–78. doi: 10.1084/jem.20081571
- Ding J., Huang S., Wang Y., Tian Q., Zha R., Shi H., Wang Q., Ge C., Chen T., Zhao Y., Liang L., Li J., He X. Genome-wide screening reveals that miR-195 targets the TNF-α/NF-κB pathway by down-regulating IκB kinase alpha and TAB3 in hepatocellular carcinoma // Hepatology. 2013. Vol. 58, № 2. P. 654–666. doi: 10.1002/hep.26378
- Dongiovanni P., Meroni M., Longo M., Fargion S., Fracanzani A. L. MiRNA signature in NAFLD: A turning point for a non-invasive diagnosis // Int. J. Mol. Sci. MDPI AG, 2018. Vol. 19, № 12. doi: 10.3390/ijms19123966
- El-Agroudy N. N., El-Naga R. N., El-Razeq R. A., El-Demerdash E. Forskolin, a hedgehog signalling inhibitor, attenuates carbon tetrachloride‐induced liver fibrosis in rats // Br. J. Pharmacol. 2016. Vol. 173, № 22. P. 3248–3260. doi: 10.1111/bph.13611
- Estep M., Armistead D., Hossain N., Elarainy H., Goodman Z., Baranova A., Chandhoke V., Younossi Z. M. Differential expression of miRNAs in the visceral adipose tissue of patients with non‐alcoholic fatty liver disease // Aliment. Pharmacol. Ther. 2010. Vol. 32, № 3. P. 487–497. doi: 10.1111/j.1365-2036.2010.04366.x
- Faraoni I., Antonetti F. R., Cardone J., Bonmassar E. miR-155 gene: A typical multifunctional microRNA // Biochim. Biophys. Acta BBA – Mol. Basis Dis. 2009. Vol. 1792, № 6. P. 497–505. doi: 10.1016/j.bbadis.2009.02.013
- Feng L., Yang X., Liang S., Xu Q., Miller M. R., Duan J., Sun Z. Silica nanoparticles trigger the vascular endothelial dysfunction and prethrombotic state via miR-451 directly regulating the IL6R signaling pathway // Part. Fibre Toxicol. 2019. Vol. 16, № 1. P. 16. doi: 10.1186/s12989-019-0300-x
- Feng Y., Li W., Wang Z., Zhang R., Li Y., Zang L., Wang P., Li Z., Dong Y. The p-STAT3/ANXA2 axis promotes caspase-1-mediated hepatocyte pyroptosis in non-alcoholic steatohepatitis // J. Transl. Med. 2022. Vol. 20, № 1. P. 497. doi: 10.1186/s12967-022-03692-1
- Frandsen H. S., Vej-Nielsen J. M., Smith L. E., Sun L., Mikkelsen K. L., Thulesen A. P., Hagensen C. E., Yang F., Rogowska-Wrzesinska A. Mapping Proteome and Lipidome Changes in Early-Onset Non-Alcoholic Fatty Liver Disease Using Hepatic 3D Spheroids // Cells. 2022. Vol. 11, № 20. P. 3216. doi: 10.3390/cells11203216
- Fuchs C., Traussnigg S., Trauner M. Nuclear Receptor Modulation for the Treatment of Nonalcoholic Fatty Liver Disease // Semin. Liver Dis. 2016. Vol. 36, № 01. P. 069–086. doi: 10.1055/s-0036-1571296
- Ge J., Han T., Shan L., Na J., Li Y., Wang J. Long non-coding RNA THOR promotes ovarian Cancer cells progression via IL-6/STAT3 pathway // J. Ovarian Res. 2020. Vol. 13, № 1. P. 72. doi: 10.1186/s13048-020-00672-1
- Gong J., He X.-X., Tian D.-A. Emerging role of microRNA in hepatocellular carcinoma (Review) // Oncol. Lett. 2015. Vol. 9, № 3. P. 1027–1033. doi: 10.3892/ol.2014.2816
- Gottwein E. Roles of MicroRNAs in the Life Cycles of Mammalian Viruses // Intrinsic Immunity / ed. Cullen B. R. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. Vol. 371. P. 201–227. doi: 10.1007/978-3-642-37765-5_8
- Gross B., Pawlak M., Lefebvre P., Staels B. PPARs in obesity-induced T2DM, dyslipidaemia and NAFLD // Nat. Rev. Endocrinol. 2017. Vol. 13, № 1. P. 36–49. doi: 10.1038/nrendo.2016.135
- Guo C.-J., Pan Q., Li D.-G., Sun H., Liu B.-W. miR-15b and miR-16 are implicated in activation of the rat hepatic stellate cell: An essential role for apoptosis // J. Hepatol. 2009. Vol. 50, № 4. P. 766–778. doi: 10.1016/j.jhep.2008.11.025
- Guy C. D., Suzuki A., Zdanowicz M., Abdelmalek M. F., Burchette J., Unalp A., Diehl A. M., Hedgehog pathway activation parallels histologic severity of injury and fibrosis in human nonalcoholic fatty liver disease // Hepatology. 2012. Vol. 55, № 6. P. 1711–1721. doi: 10.1002/hep.25559
- Han M.-H., Lee J. H., Kim G., Lee E., Lee Y. R., Jang S. Y., Lee H. W., Chun J. M., Han Y. S., Yoon J. S., Kang M. K., Lee W. K., Kweon Y. O., Tak W. Y., Park S. Y., Park J. G., Hur K. Expression of the Long Noncoding RNA GAS5 Correlates with Liver Fibrosis in Patients with Nonalcoholic Fatty Liver Disease // Genes. 2020. Vol. 11, № 5. P. 545. doi: 10.3390/genes11050545
- Hata A., Chen Y.-G. TGF-β Signaling from Receptors to Smads // Cold Spring Harb. Perspect. Biol. 2016. Vol. 8, № 9. P. a022061. doi: 10.1101/cshperspect.a022061
- Hayden M. S., Ghosh S. Regulation of NF-κB by TNF family cytokines // Semin. Immunol. 2014. Vol. 26, № 3. P. 253–266. doi: 10.1016/j.smim.2014.05.004
- He M., Xu Z., Ding T., Kuang D.-M., Zheng L. MicroRNA-155 Regulates Inflammatory Cytokine Production in Tumor-associated Macrophages via Targeting C/EBPβ // Cell. Mol. Immunol. 2009. Vol. 6, № 5. P. 343–352. doi: 10.1038/cmi.2009.45
- He Z., Yang D., Fan X., Zhang M., Li Y., Gu X., Yang M. The Roles and Mechanisms of lncRNAs in Liver Fibrosis // Int. J. Mol. Sci. 2020. Vol. 21, № 4. P. 1482. doi: 10.3390/ijms21041482
- Hou X., Yin S., Ren R., Liu S., Yong L., Liu Y., Li Y., Zheng M. H., Kunos G., Gao B., Wang H. Myeloid-Cell–Specific IL-6 Signaling Promotes MicroRNA-223-Enriched Exosome Production to Attenuate NAFLD-Associated Fibrosis // Hepatology. John Wiley and Sons Inc, 2021. Vol. 74, № 1. P. 116–132. doi: 10.1002/hep.31658
- Jiang Y., Peng J., Song J., He J., Jiang M., Wang J., Ma L., Wang Y., Lin M., Wu H., Zhang Z., Gao D., Zhao Y. Loss of Hilnc prevents diet-induced hepatic steatosis through binding of IGF2BP2 // Nat. Metab. 2021. Vol. 3, № 11. P. 1569–1584. doi: 10.1038/s42255-021-00488-3
- Jin K., Li T., Sánchez-Duffhues G., Zhou F., Zhang L. Involvement of inflammation and its related microRNAs in hepatocellular carcinoma // Oncotarget. 2017. Vol. 8, № 13. P. 22145–22165. doi: 10.18632/oncotarget.13530
- Kagan P., Sultan M., Tachlytski I., Safran M., Ben-Ari Z. Both MAPK and STAT3 signal transduction pathways are necessary for IL-6-dependent hepatic stellate cells activation // PLOS ONE / ed. Avila M. A. 2017. Vol. 12, № 5. P. e0176173. doi: 10.1371/journal.pone.0176173
- Kalluri R., Weinberg R. A. The basics of epithelial-mesenchymal transition // J. Clin. Invest. 2009. Vol. 119, № 6. P. 1420–1428. doi: 10.1172/JCI39104
- Kasembeli M., Bharadwaj U., Robinson P., Tweardy D. Contribution of STAT3 to Inflammatory and Fibrotic Diseases and Prospects for its Targeting for Treatment // Int. J. Mol. Sci. 2018. Vol. 19, № 8. P. 2299. doi: 10.3390/ijms19082299
- Kim S. Y., Kim A. Y., Lee H. W., Son Y. H., Lee G. Y., Lee J.-W., Lee Y. S., Kim J. B. miR-27a is a negative regulator of adipocyte differentiation via suppressing PPARγ expression // Biochem. Biophys. Res. Commun. 2010. Vol. 392, № 3. P. 323–328. doi: 10.1016/j.bbrc.2010.01.012
- Kim S.-K., Park K.-Y., Yoon W.-C., Park S.-H., Park K.-K., Yoo D.-H., Choe J.-Y. Melittin enhances apoptosis through suppression of IL-6/sIL-6R complex-induced NF-κB and STAT3 activation and Bcl-2 expression for human fibroblast-like synoviocytes in rheumatoid arthritis // Joint Bone Spine. 2011. Vol. 78, № 5. P. 471–477. doi: 10.1016/j.jbspin.2011.01.004
- Kohanbash G., Okada H. MicroRNAs and STAT interplay // Semin. Cancer Biol. 2012. Vol. 22, № 1. P. 70–75. doi: 10.1016/j.semcancer.2011.12.010
- Kwon H., Song K., Han C., Chen W., Wang Y., Dash S., Lim K., Wu T. Inhibition of hedgehog signaling ameliorates hepatic inflammation in mice with nonalcoholic fatty liver disease // Hepatology. 2016. Vol. 63, № 4. P. 1155–1169. doi: 10.1002/hep.28289
- Ladeiro Y., Couchy G., Balabaud C., Bioulac-Sage P., Pelletier L., Rebouissou S., Zucman-Rossi J. MicroRNA profiling in hepatocellular tumors is associated with clinical features and oncogene/tumor suppressor gene mutations // Hepatology. 2008. Vol. 47, № 6. P. 1955–1963. doi: 10.1002/hep.22256
- Lai C.-Y., Yeh K.-Y., Lin C.-Y., Hsieh Y.-W., Lai H.-H., Chen J.-R., Hsu C.-C., Her G. MicroRNA-21 Plays Multiple Oncometabolic Roles in the Process of NAFLD-Related Hepatocellular Carcinoma via PI3K/AKT, TGF-β, and STAT3 Signaling // Cancers. 2021. Vol. 13, № 5. P. 940. doi: 10.3390/cancers13050940
- Lakner A. M., Steuerwald N. M., Walling T. L., Ghosh S., Li T., McKillop I. H., Russo M. W., Bonkovsky H. L., Schrum L. W. Inhibitory effects of microRNA 19b in hepatic stellate cell-mediated fibrogenesis // Hepatology. 2012. Vol. 56, № 1. P. 300–310. doi: 10.1002/hep.25613
- Lan X., Wu L., Wu N., Chen Q., Li Y., Du X., Wei C., Feng L., Li Y., Osoro E. K., Sun M., Ning Q., Yan X., Yang X., Li D., Lu S. Long Noncoding RNA lnc-HC Regulates PPARγ-Mediated Hepatic Lipid Metabolism through miR-130b-3p // Mol. Ther. – Nucleic Acids. 2019. Vol. 18. P. 954–965. doi: 10.1016/j.omtn.2019.10.018
- Lee S. M., Muratalla J., Sierra-Cruz M., Cordoba-Chacon J. Role of hepatic peroxisome proliferator-activated receptor γ in non-alcoholic fatty liver disease // J. Endocrinol. 2023. Vol. 257, № 1. P. e220155. doi: 10.1530/JOE-22-0155
- Lemmers A., Gustot T., Durnez A., Evrard S., Moreno C., Quertinmont E., Vercruysse V., Demetter P., Franchimont D., Le Moine O., Geerts A., Devière J.An inhibitor of interleukin-6 trans-signalling, sgp130, contributes to impaired acute phase response in human chronic liver disease // Clin. Exp. Immunol. 2009. Vol. 156, № 3. P. 518–527. doi: 10.1111/j.1365-2249.2009.03916.x
- Leti F., Legendre C., Still C. D., Chu X., Petrick A., Gerhard G. S., DiStefano J. K. Altered expression of MALAT1 lncRNA in nonalcoholic steatohepatitis fibrosis regulates CXCL5 in hepatic stellate cells // Transl. Res. 2017. Vol. 190. P. 25-39.e21. doi: 10.1016/j.trsl.2017.09.001
- Leti F., Malenica I., Doshi M., Courtright A., Van Keuren-Jensen K., Legendre C., Still C. D., Gerhard G. S., DiStefano J. K. High-throughput sequencing reveals altered expression of hepatic microRNAs in nonalcoholic fatty liver disease–related fibrosis // Transl. Res. 2015. Vol. 166, № 3. P. 304–314. doi: 10.1016/j.trsl.2015.04.014
- Li X., Chen Y., Wu S., He J., Lou L., Ye W., Wang J.МicroRNA-34a and microRNA-34c promote the activation of human hepatic stellate cells by targeting peroxisome proliferator-activated receptor γ // Mol. Med. Rep. 2015. Vol. 11, № 2. P. 1017–1024. doi: 10.3892/mmr.2014.2846
- Li Z., Wang J., Zeng Q., Hu C., Zhang J., Wang H., Yan J., Li H., Yu Z. Long Noncoding RNA HOTTIP Promotes Mouse Hepatic Stellate Cell Activation via Downregulating miR-148a // Cell. Physiol. Biochem. 2018. Vol. 51, № 6. P. 2814–2828. doi: 10.1159/000496012
- Lin H.-Y., Wang F.-S., Yang Y.-L., Huang, Y.-H. MicroRNA-29a Suppresses CD36 to Ameliorate High Fat Diet-Induced Steatohepatitis and Liver Fibrosis in Mice // Cells. 2019. Vol. 8, № 10. P. 1298. doi: 10.3390/cells8101298
- Lin L. L., Wang W., Hu Z., Wang L. W., Chang J., Qian H. Negative feedback of miR-29 family TET1 involves in hepatocellular cancer // Med. Oncol. 2014. Vol. 31, № 12. P. 291. doi: 10.1007/s12032-014-0291-2
- Lino Cardenas C. L., Henaoui I. S., Courcot E., Roderburg C., Cauffiez C., Aubert S., Copin M.-C., Wallaert B., Glowacki F., Dewaeles E., Milosevic J., Maurizio J., Tedrow J., Marcet B., Lo-Guidice J.-M., Kaminski N., Barbry P., Luedde T., Perrais M., Pottier N. miR-199a-5p Is Upregulated during Fibrogenic Response to Tissue Injury and Mediates TGFbeta-Induced Lung Fibroblast Activation by Targeting Caveolin-1 // PLoS Genet. / ed. Scott H. S. 2013. Vol. 9, № 2. P. e1003291. doi: 10.1371/journal.pgen.1003291
- Liu J., Tang T., Wang G.-D., Liu B. LncRNA-H19 promotes hepatic lipogenesis by directly regulating miR-130a/PPARγ axis in non-alcoholic fatty liver disease // Biosci. Rep. 2019. Vol. 39, № 7. doi: 10.1042/BSR20181722
- McFarland-Mancini M.M., Funk H. M., Paluch A. M., Zhou M., Giridhar P. V., Mercer C. A., Kozma S. C., Drew A. F. Differences in Wound Healing in Mice with Deficiency of IL-6 versus IL-6 Receptor // J. Immunol. 2010. Vol. 184, № 12. P. 7219–7228. doi: 10.4049/jimmunol.0901929
- Mehta R., Otgonsuren M., Younoszai Z., Allawi H., Raybuck B., Younossi Z. Circulating miRNA in patients with non-alcoholic fatty liver disease and coronary artery disease // BMJ Open Gastroenterol. 2016. Vol. 3, № 1. doi: 10.1136/bmjgast-2016-000096
- Mitsuyama K., Sata M., Rose-John S. Interleukin-6 trans-signaling in inflammatory bowel disease // Cytokine Growth Factor Rev. 2006. Vol. 17, № 6. P. 451–461. doi: 10.1016/j.cytogfr.2006.09.003
- Mittal S., Inamdar S., Acharya J., Pekhale K., Kalamkar S., Boppana R., Ghaskadbi S. miR-3666 inhibits development of hepatic steatosis by negatively regulating PPARγ // Biochim. Biophys. Acta BBA – Mol. Cell Biol. Lipids. 2020. Vol. 1865, № 10. P. 158777. doi: 10.1016/j.bbalip.2020.158777
- Mòdol T., Brice N., Ruiz De Galarreta M., García Garzón A., Iraburu M. J., Martínez‐Irujo J. J., López‐Zabalza M. J. Fibronectin Peptides as Potential Regulators of Hepatic Fibrosis Through Apoptosis of Hepatic Stellate Cells // J. Cell. Physiol. 2015. Vol. 230, № 3. P. 546–553. doi: 10.1002/jcp.24714
- Morán‐Salvador E., López‐Parra M., García‐Alonso V., Titos E., Martínez‐Clement, M., González‐Périz A., López‐Vicario C., Barak Y., Arroyo V., Clària, J. Role for PPARγ in obesity‐induced hepatic steatosis as determined by hepatocyte‐ and macrophage‐specific conditional knockouts // FASEB J. 2011. Vol. 25, № 8. P. 2538–2550. doi: 10.1096/fj.10-173716
- Morán-Salvador E., Titos E., Rius B., González-Périz A., García-Alonso V., López-Vicario C., Miquel R., Barak Y., Arroyo V., Clària J. Cell-specific PPARγ deficiency establishes anti-inflammatory and anti-fibrogenic properties for this nuclear receptor in non-parenchymal liver cells // J. Hepatol. 2013. Vol. 59, № 5. P. 1045–1053. doi: 10.1016/j.jhep.2013.06.023
- Naka T., Nishimoto N., Kishimoto T.The paradigm of IL-6: from basic science to medicine. // Arthritis Res. 2002. Vol. 4, № Suppl 3. P. S233. doi: 10.1186/ar565
- Nakahara H., Song J., Sugimoto M., Hagihara K., Kishimoto T., Yoshizaki K., Nishimoto N. Anti-interleukin-6 receptor antibody therapy reduces vascular endothelial growth factor production in rheumatoid arthritis // Arthritis Rheum. 2003. Vol. 48, № 6. P. 1521–1529. doi: 10.1002/art.11143
- Neveu W. A., Allard J. B., Dienz O., Wargo M. J., Ciliberto G., Whittaker L. A., Rincon M. IL-6 Is Required for Airway Mucus Production Induced by Inhaled Fungal Allergens // J. Immunol. 2009. Vol. 183, № 3. P. 1732–1738. doi: 10.4049/jimmunol.0802923
- Nishihara M., Ogura H., Ueda N., Tsuruoka M., Kitabayashi C., Tsuji F., Aono H., Ishihara K., Huseby E., Betz U. A. K., Murakami M., Hirano T.IL-6–gp130–STAT3 in T cells directs the development of IL-17+ Th with a minimum effect on that of Treg in the steady state // Int. Immunol. 2007. Vol. 19, № 6. P. 695–702. doi: 10.1093/intimm/dxm045
- O’Connell R.M., Taganov K. D., Boldin M. P., Cheng G., Baltimore D. MicroRNA-155 is induced during the macrophage inflammatory response // Proc. Natl. Acad. Sci. 2007. Vol. 104, № 5. P. 1604–1609. doi: 10.1073/pnas.0610731104
- Ogawa T., Enomoto M., Fujii H., Sekiya Y., Yoshizato K., Ikeda K., Kawada, N. MicroRNA-221/222 upregulation indicates the activation of stellate cells and the progression of liver fibrosis // Gut. 2012. Vol. 61, № 11. P. 1600–1609. doi: 10.1136/gutjnl-2011-300717
- Pan Y., Wang J., He L., Zhang F. MicroRNA-34a Promotes EMT and Liver Fibrosis in Primary Biliary Cholangitis by Regulating TGF-β1/smad Pathway // J. Immunol. Res. / ed. Ciccacci C. 2021. Vol. 2021. P. 1–13. doi: 10.1155/2021/6890423
- Pettinelli P., Videla L. A. Up-Regulation of PPAR-γ mRNA Expression in the Liver of Obese Patients: an Additional Reinforcing Lipogenic Mechanism to SREBP-1c Induction // J. Clin. Endocrinol. Metab. 2011. Vol. 96, № 5. P. 1424–1430. doi: 10.1210/jc.2010-2129
- Powell E. E., Wong V. W.S., Rinella M. Non-alcoholic fatty liver disease // The Lancet. Elsevier B. V., 2021. Vol. 397, № 10290. P. 2212–2224. doi: 10.1016/S0140-6736(20)32511-3
- Puengel T., Liu H., Guillot A., Heymann F., Tacke F., Peiseler M. Nuclear Receptors Linking Metabolism, Inflammation, and Fibrosis in Nonalcoholic Fatty Liver Disease // Int. J. Mol. Sci. 2022. Vol. 23, № 5. P. 2668. doi: 10.3390/ijms23052668
- Qian H., Deng X., Huang Z.-W., Wei J., Ding C.-H., Feng R.-X., Zeng X., Chen Y.-X., Ding J., Qiu L., Hu Z.-L., Zhang X., Wang H.-Y., Zhang J.-P., Xie W.-F. An HNF1α-regulated feedback circuit modulates hepatic fibrogenesis via the crosstalk between hepatocytes and hepatic stellate cells // Cell Res. 2015. Vol. 25, № 8. P. 930–945. doi: 10.1038/cr.2015.84
- Qin R., Huang W., Huang Y., Zhang Z., Su Y., Chen S., Wang H. lncRNA MEG3 modulates hepatic stellate cell activation by sponging miR145 to regulate PPARγ // Mol. Med. Rep. 2021. Vol. 25, № 1. P. 3. doi: 10.3892/mmr.2021.12519
- Qin X., Wang W., Wu H., Liu D., Wang R., Xu J., Jiang H., Pan F. PPARγ-mediated microglial activation phenotype is involved in depressive-like behaviors and neuroinflammation in stressed C57BL/6J and ob/ob mice // Psychoneuroendocrinology. 2020. Vol. 117. P. 104674. doi: 10.1016/j.psyneuen.2020.104674
- Rincón M., Flavell R. A. Transcriptional control in the Th1/Th2 decision // Curr. Biol. 1997. Vol. 7, № 11. P. R729–R732. doi: 10.1016/s0960-9822(06)00368-x
- Rohilla S., Kaur S., Puria R. Long non-coding RNA in Non-alcoholic fatty liver disease // Adv. Clin. Chem. Academic Press Inc., 2022. Vol. 110. P. 1–35. doi: 10.1016/bs.acc.2022.06.001
- Scheller J., Chalaris A., Schmidt-Arras D., Rose-John S. The pro- and anti-inflammatory properties of the cytokine interleukin-6 // Biochim. Biophys. Acta BBA – Mol. Cell Res. 2011. Vol. 1813, № 5. P. 878–888. doi: 10.1016/j.bbamcr.2011.01.034
- Schmidt-Arras D., Rose-John S. IL-6 pathway in the liver: From physiopathology to therapy // J. Hepatol. 2016. Vol. 64, № 6. P. 1403–1415. doi: 10.1016/j.jhep.2016.02.004
- Scisciani C., Vossio S., Guerrieri F., Schinzari V., De Iaco R., D’Onorio De Meo P., Cervello M., Montalto G., Pollicino T., Raimondo G., Levrero M., Pediconi N. Transcriptional regulation of miR-224 upregulated in human HCCs by NFκB inflammatory pathways // J. Hepatol. 2012. Vol. 56, № 4. P. 855–861. doi: 10.1016/j.jhep.2011.11.017
- Shen X., Guo H., Xu J., Wang, J. Inhibition of lncRNA HULC improves hepatic fibrosis and hepatocyte apoptosis by inhibiting the MAPK signaling pathway in rats with nonalcoholic fatty liver disease // J. Cell. Physiol. 2019. Vol. 234, № 10. P. 18169–18179. doi: 10.1002/jcp.28450
- Shu B., Zhou Y.-X., Li H., Zhang R.-Z., He C., Yang X. The METTL3/MALAT1/PTBP1/USP8/TAK1 axis promotes pyroptosis and M1 polarization of macrophages and contributes to liver fibrosis // Cell Death Discov. 2021. Vol. 7, № 1. P. 368. doi: 10.1038/s41420-021-00756-x
- Skat‐Rørdam J., Højland Ipsen D., Lykkesfeldt J., Tveden‐Nyborg P. A role of peroxisome proliferator‐activated receptor γ in non‐alcoholic fatty liver disease // Basic Clin. Pharmacol. Toxicol. 2019. Vol. 124, № 5. P. 528–537. doi: 10.1111/bcpt.13190
- Song L., Chen T., Zhao X., Xu Q., Jiao R., Li J., Kong L. Pterostilbene prevents hepatocyte epithelial‐mesenchymal transition in fructose‐induced liver fibrosis through suppressing miR‐34a/Sirt1/p53 and TGF‐β1/Smads signalling // Br. J. Pharmacol. 2019. Vol. 176, № 11. P. 1619–1634. doi: 10.1111/bph.14573
- Staels B., Rubenstrunk A., Noel B., Rigou G., Delataille P., Millatt L. J., Baron M., Lucas A., Tailleux A., Hum D. W., Ratziu V., Cariou B., Hanf R. Hepatoprotective effects of the dual peroxisome proliferator-activated receptor alpha/delta agonist, GFT505, in rodent models of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis: Hepatology // Hepatology. 2013. Vol. 58, № 6. P. 1941–1952. doi: 10.1002/hep.26461
- Streetz K. Interleukin 6/gp130-dependent pathways are protective during chronic liver diseases // Hepatology. 2003. Vol. 38, № 1. P. 218–229. doi: 10.1053/jhep.2003.50268
- Tang Y., He G., Huang S., Zhong K., Liao H., Cai L., Gao Y., Peng Z., Fu S. The long noncoding RNA AK002107 negatively modulates miR‐140‐5p and targets TGFBR1 to induce epithelial–mesenchymal transition in hepatocellular carcinoma // Mol. Oncol. 2019. Vol. 13, № 5. P. 1296–1310. doi: 10.1002/1878-0261.12487
- Tao J., Xia L., Cai Z., Liang L., Chen Y., Meng J., Wang Z. Interaction Between microRNA and DNA Methylation in Atherosclerosis // DNA Cell Biol. 2021. Vol. 40, № 1. P. 101–115. doi: 10.1089/dna.2020.6138
- Thiery J. P., Acloque H., Huang R. Y. J., Nieto M. A. Epithelial-Mesenchymal Transitions in Development and Disease // Cell. 2009. Vol. 139, № 5. P. 871–890. doi: 10.1016/j.cell.2009.11.007
- Tian S., Zhou X., Zhang M., Cui L., Li B., Liu Y., Su R., Sun K., Hu Y., Yang F., Xuan G., MaьS., Zheng X., Zhou X., Guo C., Shang Y., Wang J., Han Y. Mesenchymal stem cell-derived exosomes protect against liver fibrosis via delivering miR-148a to target KLF6/STAT3 pathway in macrophages // Stem Cell Res. Ther. BioMed Central Ltd, 2022. Vol. 13, № 1. doi: 10.1186/s13287-022-03010-y
- Tomita K. Tumour necrosis factor signalling through activation of Kupffer cells plays an essential role in liver fibrosis of non-alcoholic steatohepatitis in mice // Gut. 2006. Vol. 55, № 3. P. 415–424. doi: 10.1136/gut.2005.071118
- Tu X., ZhangьH., Zhang J., Zhao S., Zheng X., Zhang Z., Zhu J., Chen J., Dong L., Zang Y., Zhang J.MICRORNA ‐101 suppresses liver fibrosis by targeting the TGF β signalling pathway // J. Pathol. 2014. Vol. 234, № 1. P. 46–59. doi: 10.1002/path.4373
- Tzavlaki K., Moustakas A. TGF-β Signaling // Biomolecules. 2020. Vol. 10, № 3. P. 487. doi: 10.3390/biom10030487
- Wang B., Majumder S., Nuovo G., Kutay H., Volinia S., Patel T., Schmittgen T. D., Croce C., Ghoshal K., Jacob S. T. Role of microRNA-155 at early stages of hepatocarcinogenesis induced by choline-deficient and amino acid-defined diet in C57BL/6 mice // Hepatology. 2009. Vol. 50, № 4. P. 1152–1161. doi: 10.1002/hep.23100
- Wang D.-R., Wang B., Yang M., Liu Z., Sun J., Wang Y., Sun H., Xie L.-J. Suppression of miR-30a-3p Attenuates Hepatic Steatosis in Non-alcoholic Fatty Liver Disease // Biochem. Genet. 2020. Vol. 58, № 5. P. 691–704. doi: 10.1007/s10528-020-09971-0
- Wang Q., Wei S., Li L., Bu Q., Zhou H., Su W., Liu Z., Wang M., Lu L. miR-139-5p sponged by LncRNA NEAT1 regulates liver fibrosis via targeting β-catenin/SOX9/TGF-β1 pathway // Cell Death Discov. 2021a. Vol. 7, № 1. P. 243. doi: 10.1038/s41420-021-00632-8
- WangT., Zhang C., Meng X., Zhu B., Wang S., Yuan W., Zhang S., Xu J., Zhang C. Long Noncoding RNA Metastasis-Associated Lung Adenocarcinoma Transcript 1 in Extracellular Vesicles Promotes Hepatic Stellate Cell Activation, Liver Fibrosis and β-Catenin Signaling Pathway // Front. Physiol. 2022. Vol. 13. P. 792182. doi: 10.3389/fphys.2022.792182
- Wang Y., Du J., Niu X., Fu N., Wang R., Zhang Y., Zhao S., Sun D., Nan Y. MiR-130a-3p attenuates activation and induces apoptosis of hepatic stellate cells in nonalcoholic fibrosing steatohepatitis by directly targeting TGFBR1 and TGFBR2 // Cell Death Dis. 2017. Vol. 8, № 5. P. e2792–e2792. doi: 10.1038/cddis.2017.10
- Wang Y., Gao L. Monocyte-derived KCs (MoKCs) contribute to the KC pool in NASH // Cell. Mol. Immunol. Springer Nature, 2021. Vol. 18, № 3. P. 518–519. doi: 10.1038/s41423-020-00606-3
- Wang Y., Mou Q., Zhu Z., Zhao L., Zhu L. MALAT1 promotes liver fibrosis by sponging miR181a and activating TLR4 NF κB signaling // Int. J. Mol. Med. 2021b. Vol. 48, № 6. P. 215. doi: 10.3892/ijmm.2021.5048
- Wieckowska A., Papouchado B. G., Li Z., Lopez R., Zein N. N., Feldstein A. E. Increased Hepatic and Circulating Interleukin-6 Levels in Human Nonalcoholic Steatohepatitis // Am. J. Gastroenterol. 2008. Vol. 103, № 6. P. 1372–1379. doi: 10.1111/j.1572-0241.2007.01774.x
- Wu M., Sun J., Wang L., Wang P., Xiao T., Wang S., Liu Q. The lncRNA HOTAIR via miR-17-5p is involved in arsenite-induced hepatic fibrosis through regulation of Th17 cell differentiation // J. Hazard. Mater. Elsevier B. V., 2023. Vol. 443. doi: 10.1016/j.jhazmat.2022.130276
- Wu Y.-Y., Wu S., Li X.-F., Luo S., Wang A., Yin S.-Q., Huang C., Li J. LncRNA MEG3 reverses CCl4-induced liver fibrosis by targeting NLRC5 // Eur. J. Pharmacol. 2021. Vol. 911. P. 174462. doi: 10.1016/j.ejphar.2021.174462
- Xu B., Gerin I., Miao H., Vu-Phan D., Johnson C. N., Xu R., Chen X.-W., Cawthorn W. P., MacDougald O. A., Koenig R. J. Multiple Roles for the Non-Coding RNA SRA in Regulation of Adipogenesis and Insulin Sensitivity // PLoS ONE / ed. Fadini G. P. 2010. Vol. 5, № 12. P. e14199. doi: 10.1371/journal.pone.0014199
- Yamada H., Ohashi K., Suzuki K., Munetsuna E., Ando Y., Yamazaki M., Ishikawa H., Ichino N., Teradaira R., Hashimoto S. Longitudinal study of circulating miR-122 in a rat model of non-alcoholic fatty liver disease // Clin. Chim. Acta. 2015. Vol. 446. P. 267–271. doi: 10.1016/j.cca.2015.05.002
- Ye L., Zhao D., Xu Y., Lin J., Xu J., Wang K., Ye Z., Luo Y., Liu S., Yang, H. LncRNA-Gm9795 promotes inflammation in non-alcoholic steatohepatitis via NF-kappa B/JNK pathway by endoplasmic reticulum stress // J. Transl. Med. 2021a. Vol. 19, № 1. P. 101. doi: 10.1186/s12967-021-02769-7
- Ye M., Wang S., Sun P., Qie J. Integrated MicroRNA Expression Profile Reveals Dysregulated miR-20a-5p and miR-200a-3p in Liver Fibrosis // BioMed Res. Int. / ed. Huang T. 2021. Vol. 2021b. P. 1–10. doi: 10.1155/2021/9583932
- Yokomizo R., Yanaihara N., Yamaguchi N., Saito M., Kawabata A., Takahashi K., Takenaka M., Yamada K., Shapiro J. S., Okamoto A. MicroRNA-34a /IL-6R pathway as a potential therapeutic target for ovarian high-grade serous carcinoma // Oncotarget. 2019. Vol. 10, № 47. P. 4880–4893. doi: 10.18632/oncotarget.27117
- Yu F., Chen B., Dong P., Zheng J.HOTAIR Epigenetically Modulates PTEN Expression via MicroRNA-29b: A Novel Mechanism in Regulation of Liver Fibrosis // Mol. Ther. 2017. Vol. 25, № 1. P. 205–217. doi: 10.1016/j.ymthe.2016.10.015
- Yu F., Guo Y., Chen B., Dong P., Zheng J.MicroRNA-17-5p activates hepatic stellate cells through targeting of Smad7 // Lab. Invest. 2015b. Vol. 95, № 7. P. 781–789. doi: 10.1038/labinvest.2015.58
- Yu F., Zheng J., Mao Y., Dong P., Lu Z., Li G., Guo C., Liu Z., Fan X. Long Non-coding RNA Growth Arrest-specific Transcript 5 (GAS5) Inhibits Liver Fibrogenesis through a Mechanism of Competing Endogenous RNA // J. Biol. Chem. 2015a. Vol. 290, № 47. P. 28286–28298. doi: 10.1074/jbc.M115.683813
- Yu S., Matsusue K., Kashireddy P., Cao W.-Q., Yeldandi V., Yeldandi A. V., Rao M. S., Gonzalez F. J., Reddy J. K. Adipocyte-specific Gene Expression and Adipogenic Steatosis in the Mouse Liver Due to Peroxisome Proliferator-activated Receptor γ1 (PPARγ1) Overexpression // J. Biol. Chem. 2003. Vol. 278, № 1. P. 498–505. doi: 10.1074/jbc.M210062200
- Zaiou M. Peroxisome Proliferator-Activated Receptor-γ as a Target and Regulator of Epigenetic Mechanisms in Nonalcoholic Fatty Liver Disease // Cells. 2023. Vol. 12, № 8. P. 1205. doi: 10.3390/cells12081205
- Zeng N., Huang R., Li N., Jiang H., Li R., Wang F., Chen W., Xia M., Wang, Q. MiR-451a attenuates free fatty acids–mediated hepatocyte steatosis by targeting the thyroid hormone responsive spot 14 gene // Mol. Cell. Endocrinol. 2018. Vol. 474. P. 260–271. doi: 10.1016/j.mce.2018.03.016
- Zeng Q., Liu C.-H., Wu D., Jiang W., Zhang N., Tang H. LncRNA and circRNA in Patients with Non-Alcoholic Fatty Liver Disease: A Systematic Review // Biomolecules. 2023. Vol. 13, № 3. P. 560. doi: 10.3390/biom13030560
- Zhang B., Yu L., Han N., Hu Z., Wang S., Ding L., Jiang J. LINC01116 targets miR-520a-3p and affects IL6R to promote the proliferation and migration of osteosarcoma cells through the Jak-stat signaling pathway // Biomed. Pharmacother. 2018. Vol. 107. P. 270–282. doi: 10.1016/j.biopha.2018.07.119
- Zhang D., Mou J., Wang F., Liu J., Hu X.CRNDE enhances neuropathic pain via modulating miR‐136/IL6R axis in CCI rat models // J. Cell. Physiol. 2019d. Vol. 234, № 12. P. 22234–22241. doi: 10.1002/jcp.28790
- Zhang J., Han C., Song K., Chen W., Ungerleider N., Yao L., Ma W., Wu T. The long-noncoding RNA MALAT1 regulates TGF-β/Smad signaling through formation of a lncRNA-protein complex with Smads, SETD2 and PPM1A in hepatic cells // PLOS ONE / ed. Buday L. 2020. Vol. 15, № 1. P. e0228160. doi: 10.1371/journal.pone.0228160
- Zhang K., Han X., Zhang Z., Zheng L., Hu Z., Yao Q., Cui H., Shu G., Si M., Li C., Shi Z., Chen T., Han Y., Chang Y., Yao Z., Han T., Hong W. The liver-enriched lnc-LFAR1 promotes liver fibrosis by activating TGFβ and Notch pathways // Nat. Commun. 2017. Vol. 8, № 1. P. 144. doi: 10.1038/s41467-017-00204-4
- Zhang L., Lu X., Zhou X., Liu Q., Chen L., Cai,F. NEAT1 induces osteosarcoma development by modulating the miR‐339‐5p/TGF‐β1 pathway // J. Cell. Physiol. 2019b. Vol. 234, № 4. P. 5097–5105. doi: 10.1002/jcp.27313
- Zhang Q., Yu K., Cao Y., Luo Y., Liu Y., Zhao C. miR-125b promotes the NF-κB-mediated inflammatory response in NAFLD via directly targeting TNFAIP3 // Life Sci. 2021. Vol. 270. P. 119071. doi: 10.1016/j.lfs.2021.119071
- Zhang Q., Yu K., Cao Y., Luo Y., Liu Y., Zhao C. MicroRNA-378 promotes hepatic inflammation and fibrosis via modulation of the NF-κB-TNFα pathway // J. Hepatol. 2019c. Vol. 70, № 1. P. 87–96. doi: 10.1016/j.jhep.2018.08.026
- Zhang Y.-Z., Yao J.-N., Zhang L.-F., Wang C.-F., Zhang X.-X., Gao B. Effect of NLRC5 on activation and reversion of hepatic stellate cells by regulating the nuclear factor-κB signaling pathway // World J. Gastroenterol. 2019a. Vol. 25, № 24. P. 3044–3055. doi: 10.3748/wjg.v25.i24.3044
- Zhang Z., Zha Y., Hu W., Huang Z., Gao Z., Zang Y., Chen J., Dong L., Zhang J. The Autoregulatory Feedback Loop of MicroRNA-21/Programmed Cell Death Protein 4/Activation Protein-1 (MiR-21/PDCD4/AP-1) as a Driving Force for Hepatic Fibrosis Development // J. Biol. Chem. 2013. Vol. 288, № 52. P. 37082–37093. doi: 10.1074/jbc.M113.517953
- Zhao J., Qi Y.-F., Yu Y.-R. STAT3: A key regulator in liver fibrosis // Ann. Hepatol. 2021. Vol. 21. P. 100224. doi: 10.1016/j.aohep.2020.06.010
- Zhao N., Wang R., Zhou L., Zhu Y., Gong J., Zhuang S.-M. MicroRNA-26b suppresses the NF-κB signaling and enhances the chemosensitivity of hepatocellular carcinoma cells by targeting TAK1 and TAB3 // Mol. Cancer. 2014. Vol. 13, № 1. P. 35. doi: 10.1186/1476-4598-13-35
- Zheng J., Wu C., Lin Z., Guo Y., Shi L., Dong P., Lu Z., Gao S., Liao Y., Chen B., Yu F. Curcumin up‐regulates phosphatase and tensin homologue deleted on chromosome 10 through micro RNA ‐mediated control of DNA methylation – a novel mechanism suppressing liver fibrosis // FEBS J. 2014. Vol. 281, № 1. P. 88–103. doi: 10.1111/febs.12574
- Zhu C., Huang L., Xu F., Li P., Li P., Hu F. LncRNA PCAT6 promotes tumor progression in osteosarcoma via activation of TGF-β pathway by sponging miR-185-5p // Biochem. Biophys. Res. Commun. 2020. Vol. 521, № 2. P. 463–470. doi: 10.1016/j.bbrc.2019.10.136
- Zhu D., Lyu L., Shen P., Wang J., Chen J., Sun X., Chen L., Zhang L., Zhou Q., Duan Y. rSjP40 protein promotes PPARγ expression in LX‐2 cells through microRNA‐27b // FASEB J. 2018. Vol. 32, № 9. P. 4798–4803. doi: 10.1096/fj.201700520RR
- Zizzo G., Cohen P. L. The PPAR-γ antagonist GW9662 elicits differentiation of M2c-like cells and upregulation of the MerTK/Gas6 axis: a key role for PPAR-γ in human macrophage polarization // J. Inflamm. 2015. Vol. 12, № 1. P. 36. doi: 10.1186/s12950-015-0081-4
Supplementary files
