Dipeptide L-сarnosine (β-alanyl-L-histidine) — nervous tissue cryoprotector non-hybernate animals

Cover Page

Cite item

Full Text

Abstract

In this work, the cryoprotective properties of dipeptide L-carnosine (β-alanyl-L-histidine) were studied on slices of the olfactory cortex of the brain of rats. Changes in the activity of N-methyl-D-aspartate receptors were analyzed as the most vulnerable to the effect of cryopreservation (CP), for this purpose, extracellular NMDA potentials were recorded. Slices were incubated with L-carnosine (20 mM) in the medium and frozen at a slow rate (0.1°C/min) down to –10°C and after CS (30 days) they were heated at the same rate (0.1°C/min) to +37°C. The effectiveness of cryoprotection of L-carnosine was determined by changes in the amplitudes of NMDA potentials after CP compared to before CP. The dipeptide restored the pH of the freezing medium 6.9 (without L-carnosine) to the optimum pH 7.3—7.4, promoted dehydration of free water from slices after CP, inhibited the development of glutamate excitotoxicity in slices. The data obtained prove that L-carnosine exhibits the properties of a non-toxic effective cryoprotector in the nervous tissue of warm-blooded non-hibernating animals.

Full Text

Restricted Access

About the authors

A. A. Mokrushin

Institute of Physiology, I. P. Pavlov, Russian Academy of Sciences

Author for correspondence.
Email: mok@inbox.ru
Russian Federation, Saint Petersburg

References

  1. Ашмарин И.П., Каразеева Е.П., Лелекова Т.В. Проблемы эффективности ультрамалых доз и концентраций эндогенных и экзогенных веществ // Нейроиммунология, эпидемиология и интерферонология рассеянного склероза. СПб. 1996. С. 29—34.
  2. Бурлакова Е.Б., Конрадов А.А., Худяков И.В. Воздействие химических агентов в сверхмалых дозах на биологические объекты // Изв. АН СССР. Сер. биол. 1990. № 2. С. 184—193.
  3. Долгов Г.В., Куликов С.В., Легеза В.И., Малинин В.В., Морозов В.Г., Смирнов В.С., Сосюкин А.Е. Клиническая фармакология Тимогена. СПб.: Наука. 2003. 106 с.
  4. Митюшов М.И., Емельянов Н.А., Мокрушин А.А. Переживающий срез мозга как объект нейрофизиологического и нейрохимического исследования. Л.: Наука. 1986. 127 с.
  5. Мокрушин А.А. Пептид-зависимые механизмы нейрональной пластичности в обонятельной коре: Дис. д-ра биол. наук. Институт физиологии им. И. П. Павлова РАН. СПб. 1997. 397 с.
  6. Мокрушин А.А. Эффекты глубокого замораживания и отогревания на ионотропные глутаматергические рецепторные механизмы in vitro // Бюлл. экспер. биол. мед. 2016. Т. 161. С. 36—42.
  7. Мокрушин А.А., Боровиков С.Е. Установка для изучения гипотермических эффектов на переживающих срезах мозга теплокровных // Междунар. журн. прикл. фундам. исслед. 2017. Т. 2. С. 214.
  8. Мокрушин А.А. Улучшение кислотно-щелочного состава среды для длительного и обратимого криосохранения срезов мозга крыс // Цитология. 2022. Т. 64. С. 96—102. doi: 10.31857/S0041377122010084
  9. Пичугин Ю.И. Теоретические и практические аспекты современной криобиологии. Москва. 2013. С. 60—62.
  10. Сазонов Л А., Зайцев С.В. Действие сверхмалых доз (10–18—10–14 М) биологически активных веществ: общие закономерности, особенности и возможные механизмы // Биохимия. 1992. Т. 57. С. 1443—1460.
  11. Стволинский С.Л., Федорова Т.Н., Девятов А.А., Медведев О.С. Нейропротективное действие карнозина в условиях экспериментальной фокальной ишемии/реперфузии головного мозга // Журнал неврологии и психиатрии. 2017. Т. 12. С. 60—64. doi: 10.17116/jnervo201711712260-64
  12. Awan M., Buriak I., Fleck R., Fuller B., Goltsev A. Dimethyl sulfoxide: a central player since the dawn of cryobiology, is efficacy balanced by toxicity? // Regen. Med. 2020. V. 15. P. 1463—1491. doi: 10.2217/rme-2019-0145.
  13. Babizhayev M.A., Seguin M.C., Gueyne J., Evstigneeva R.P., Ageyeva E.A. L-carnosine (beta-alanyl-L-histidine) and carcinine (beta-alanylhistamine) act as natural antioxidants with hydroxyl-radical-scavenging and lipid-peroxidase activities // Biochem J. 1994. V. 304 (Pt 2). P. 509—516. doi: 10.1042/bj3040509.
  14. Bae O., Majid A. Role of histidine/histamine in carnosine-induced neuroprotection during ischemic brain damage // Brain Res. 2013. V. 1527. P. 246—254. doi: 10.1016/j.brainres.2013.07.004.
  15. Bartolac L.K., Lowe J.L., Koustas G., Grupen C.G. Effect of different penetrating and non-penetrating cryoprotectants and media temperature on the cryosurvival of vitrified in vitro produced porcine blastocysts // Anim. Sci. J. 2018.V. 89. P. 1230—1239. doi: 10.1111/asj.12996.
  16. Berezhnoy D.S., Stvolinsky S.L., Lopachev A.V., Kulikova O.I., Abaimov D.A., Fedorova T.N. Carnosine as an effective neuroprotector in brain pathology and potential neuromodulator in normal conditions // Amino Acids. 2019. V. 51. P. 139—150. doi: 10.1007/s00726-018-2667-7.
  17. Boldyrev A.A., Aldini G., Derave W. Physiology and pathophysiology of carnosine // Physiol. Rev. 2013. V. 93. P. 1803—1845. doi: 10.1152/physrev.00039.2012.
  18. Bonfanti L., Peretto P., De M.S., Fasolo A. Carnosine-related dipeptides in the mammalian brain // Prog. Neurobiol. 1999. V. 59. P. 333—353. doi: 10.1016/s0301-0082(99)00010-6.
  19. Caruso G. Unveiling the hidden therapeutic potential of carnosine, a molecule with a multimodal mechanism of action: a position paper // Molecules. 2022. V. 27. P. 1—14. doi: 10.3390/molecules27103303.
  20. Cho S., Wood A., Bowlby M.R. Brain Slices as Models for Neurodegenerative Disease and Screening Platforms to Identify Novel Therapeutics // Current Neuropharmacology. 2007. V. 5. P. 19—33.
  21. Dludla P.V., Jack B., Viraragavan A., Pheiffer C. A dose-dependent effect of dimethyl sulfoxide on lipid content, cell viability and oxidative stress in 3T3-L1 adipocytes // Toxicol. Rep. 2018. V. 5. P. 1014—1020. doi: 10.1016/j.toxrep.2018.10.002. eCollection 2018.
  22. Elliott G.D., Wang S., Fuller B.J. Cryoprotectants: a review of the actions and applications of cryoprotective solutes that modulate cell recovery from ultra-low temperatures // Cryobiology. 2017. V. 76. P. 74—91. doi: 10.1016/j.cryobiol.2017.04.004.
  23. Eroglu A., Russo M.J., Bieganski R., Fowler A. Intracellular trehalose improves the survival of cryopreserved mammalian cells // Nat. Biotechnol. 2000. V. 18. P. 163—167. doi: 10.1038/72608.
  24. Eroglu A., Toner M., Toth T.L. Beneficial effect of microinjected trehalose on the cryosurvival of human oocytes // Fertility and Sterility. 2002. V. 77. P. 152—158. doi: 10.1016/s0015-0282(01)02959-4.
  25. Eroglu A. Cryopreservation of mammalian oocytes by using sugars: intra- and extracellular raffinose with small amounts of dimethylsulfoxide yields high cryosurvival, fertilization, and development rates // Cryobiology. 2010.V. 60. P. S54–S59.doi: 10.1016/j.cryobiol.2009.07.001.
  26. Giwa S., Lewis J.K., Alvarez L., Langer R., Roth A.E. The promise of organ and tissue preservation to transform medicine // Nat. Biotechnol. 2017. V. 35. P. 530—542. doi: 10.1038/nbt.3889.
  27. Hanslick J.L., Lau K., Noguchi K.K., Olney J.W. Dimethyl sulfoxide (DMSO) produces widespread apoptosis in the developing central nervous system // Neurobiol. Dis. 2009. V. 34. P. 1—10. doi: 10.1016/j.nbd.2008.11.006.
  28. Hasanein P., Felegari Z. Chelating effects of carnosine in ameliorating nickel-induced nephrotoxicity in rats // Can. J. Physiol.Pharm. 2017. V. 95. P. 1426—1432.
  29. Hipkiss A.R., Preston J.E., Himsworth D.T., Worthington V.C. Pluripotent protective effectsof carnosine, a naturally occurring dipeptide // Ann. N. Y. Acad. Sci. 1998. V. 854. P. 37—53. doi: 10.1111/j.1749-6632.1998.tb09890.x.
  30. Jacob S.W., de la Torre J.C. Pharmacology of dimethyl sulfoxide in cardiac and CNS damage // Pharmacol Rep. 2009. V. 61. P. 225—235. doi: 10.1016/s1734-1140(09)70026-x.
  31. Khama-Murad A.X., Pavlinova L.I., Mokrushin A.A. Neurotropic effect of exogenous L-carnosine in cultured slices of the olfactory cortex from rat brain // Bull. Exp. Biol. Med. 2008. V. 146. P. 1—3. doi: 10.1007/s10517-008-0227-y
  32. Khama-Murad A., Mokrushin A., Pavlinova L. Neuroprotective properties of L-carnosine in the brain slices exposed to autoblood in the hemorrhagic stroke model in vitro // Regul. Pept. 2011. V. 167. P. 65—69. doi: 10.1016/j.regpep.2010.11.007.
  33. Kubomura D., Matahira Y., Masui A. Intestinal absorption and bloodclearance of L-histidine-related compounds after ingestion of anserine in humans and comparison to anserine-containing diets // J. Agric. Food Chem. 2009. V. 57. P. 1781—1785. doi: 10.1021/jf8030875.
  34. Kohen R., Yamamoto Y., Cundy K.C., Ames B.N. Antioxidant activity of carnosine, homocarnosine, and anserine present in muscle and brain // Proc. Natl. Acad. Sci. USA. 1988. V. 85. P. 3175—3179.
  35. Lenney J.F., George R.P., Weiss A.M., Kucera C.M., Chan P.W., Rinzler G.S. Human serum carnosinase: Characterization, distinction from cellular carnosinase, and activation by cadmium // Clin. Chim. Acta. 1982. V. 123. P. 221—231.
  36. Lenney J.F., Peppers S.C., Kucera-Orallo C.M., George R.P. Characterization of human tissue carnosinase // Biochem. J. 1985. V. 228. P. 653—660.
  37. Lopachev A.V., Lopacheva O.M., Akkuratov E.E., Stvolinski S.L., Fedorova T.N. Carnosine protects a primary cerebellar cell culture from acute NMDA toxicity // Neurochemical Journal. 2017. V. 11. P. 38—42. doi: 10.1016/j.ejphar.2020.173457.
  38. Mandumpal J.B., Kreck C.A., Mancera R. A molecular mechanism of solvent cryoprotection in aqueous DMSO solutions // Phys. Chem. Chem. Phys. 2010. V.13. P. 3839—3842. doi: 10.1039/c0cp02326d.
  39. Matsumura K., Hayashi F., Nagashima T. Molecular mechanisms of cell cryopreservation with polyampholytes studied by solid-state NMR // Communications Materials. 2021. V. 2. P. 116—121.
  40. Mazur P. Kinetics of water loss from cells at subzero temperatures and the likelihood of intracellular freezing // J Gen. Physiol. 1963. V. 47. P. 347—369. doi: 10.1085/jgp.47.2.347.
  41. Mazur P. Cryobiology: the freezing of biological systems // Science. 1970. V. 168. P. 939—949. doi: 10.1126/science.168.3934.939.
  42. Mehta A., Prabhakar M., Kumar P. Excitotoxicity: Bridge to various triggers in neurodegenerative disorders // European Journal of Pharmacology. 2013. V. 698. P. 6—18. doi: 10.1016/j.ejphar.2012.10.032.
  43. Mokrushin A.A., Pavlinova L.I. Effects of the blood components on the AMPA and NMDA synaptic responses in brain slices in the onset of hemorrhagic stroke // Gen. Physiol. Biophys. 2013. V. 32. P. 489—504. doi: 10.4149/gpb_2013038.
  44. Mokrushin A.A. Effects cryopreservation of ionotropic glutamatergic receptor mechanisms in vitro // CryoLetters. 2015. V. 36. P. 353—362.
  45. Namura S., Ooboshi H., Liu J. Neuroprotection after cerebral ischemia // Ann. N Y Acad. Sci. 2013. V. 1278. P. 25—32. doi: 10.1111/nyas.12087.
  46. Obrenovitch T.P., Urenjak J. Altered glutamatergic transmission in neurological disorders: from high extracellular glutamate to excessive synaptic efficacy // Progress Neurobiology. 1997. V. 51. P. 39. doi: 10.1016/s0301-0082(96)00049-4.
  47. Pepper E.D., Farrell M.J., Nord G., Finkel S.E. Antiglycation effects of carnosine and other compounds on the long-term survival of escherichia coli // Appl. Env. Microbiol. 2010. V. 76. P. 7925—7930. doi: 10.1128/AEM.01369-10.
  48. Pichugin Y., Fahy G.M., Morin R. Cryopreservation of rat hippocampal slices by Vitrification // Cryobiology. 2006. V. 52. P. 228—240. doi: 10.1016/j.cryobiol.2005.11.006.
  49. Qiu J., Hauske S.J., Zhang S. Identification and characterisation of carnostatine (san9812), a potent and selective carnosinase (cn1) inhibitor with in vivo activity // Amino Acids. 2019. V. 51. P. 7—16. doi: 10.1007/s00726-018-2601-z.
  50. Quyang L., Tian Y., Bao Y., Xu H., Cheng J. Carnosine decreased neuronal cell death through targeting glutamate system and astrocyte mitochondrial bioenergetics in cultured neuron/astrocyte exposed to ogd/recovery // Brain Res. Bull. 2016. V. 124. P. 76—84. doi: 10.1016/j.brainresbull.2016.03.019.
  51. Sassoe-Pognetto M., Cantino D., Panzanelli P., Verdundi C.L. Presynaptic co-localization of carnosine and glutamate in olfactory neurons // Neuroreport. 1993. V. 5. P. 7—10. doi: 10.1097/00001756-199310000-00001.
  52. Stvolinski S.L., Dobrota D., Mezeshova V., Lipta˘ı. T., Pronaıova N., Zalibera L., Boldyrev A. A. Carnosine and anserine in working muscles-study using proton NMR spectroscopy // Biokhimiia. 1992. V. 57. P. 1317—1323.
  53. Szydlowska K., Tymianski M. Calcium, ischemia and excitotoxicity // Cell calcium. 2010. V. 47. P. 122—129. doi: 10.1016/j.ceca.2010.01.003.
  54. Taylor M.J., Weegman B.P., Baicu S.C., Giwa S.E. New approaches to cryopreservation of cells, tissues, and organs // Transfus. Med. Hemotherapy. 2019. V. 46. P. 197—215. doi: 10.1159/000499453.
  55. Traynelis S.F., Cull-Candy S.D. Proton inhibition of N-methyl-D-aspartate receptor in cerebellar neurons // Nature. 1990. V. 345. P. 347. doi: 10.1038/345347a0.
  56. Teufel M., Saudek V., Ledig J.P. Sequence identification and characterization of human carnosinase and a closely related non-specific dipeptidase // J. Biol. Chem. 2003. V. 278. P. 6521—6531. doi: 10.1074/jbc.M209764200.
  57. Vincent P., Mulle C. Kainate receptors in epilepsy and excitotoxicity // Neuroscience. 2009. V. 158. P. 309—323. doi: 10.1016/j.neuroscience.2008.02.066.
  58. Warren D., Bickler P., Clark J., Gregersen M. Hypothermia and rewarming injury in hippocampal neurons involves intracellular Ca2+ and glutamate excitotoxicity // Neuroscience. 2012. V. 207. P. 316—325. doi: 10.1016/j.neuroscience.2011.12.034.
  59. Whaley D., Damyar K., Witek R.P., Mendoza A. Cryopreservation: An Overview of Principles and Cell-Specific Considerations // Cell Transplant. 2021. V. 30. P. 963689721999617. doi: 10.1177/0963689721999617.
  60. Yuan C., Gao J., Guo J., Bai L., Marshall C. Dimethyl sulfoxide damages mitochondrial integrity and membrane potential in cultured astrocytes // PLoS ONE. 2014. V. 9. P. e107447. doi: 10.1371/journal.pone.0107447. eCollection 2014.
  61. Zhang X., Song L., Cheng X., Yang Y., Luan B., Jia L. Carnosine pretreatment protects against hypoxia-ischemia brain damage in the neonatal rat model // Eur. J. Pharm. 2011. V. 667. P. 202—207. doi: 10.1016/j.ejphar.2011.06.003.
  62. Zemke D., Krishnamurthy R., Majid A. Carnosine is neuroprotective in a mouse model of stroke // J. Cereb. Blood Flow Metab. 2005. V. 25. P. S313.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Study of cryoprotective properties of L-carnosine on slices of the olfactory cortex of the rat brain (a) when measuring the amplitudes of NMDA potentials (b, c). a - scheme of a tangential slice of the olfactory cortex of the rat brain with the main morphological structures and localisations of stimulating and recording electrodes: LOT - lateral olfactory tract, SE - stimulating electrode, PC - piriform cortex, RE - recording electrode, b - focal potential, in slice on electrical stimulation of LOT with indication of postsynaptic components: early AMPA potential and late NMDA potential (μV), c - zoomed in NMDA potential - indicator of activity of NMDA-dependent mechanisms. Only modifications of NMDA potentials during the action of L-carnosine during CW were investigated in this work. Dotted line, isoline - slice potential at rest; vertical arrow indicates the method of measuring NMDA potential amplitudes at the time point 8 ms from the stimulation artefact. Calibration - as indicated

Download (93KB)
3. Fig. 2. Effect of L-carnosine application at different concentrations on the amplitude of NMDA potentials in rat olfactory cortex slices. The abscissa axis is scale conditional. Different concentrations of L-carnosine were tested on a separate group of slices (n = 12). Changes in the amplitudes of NMDA potentials in relation to the values before CS (control) were evaluated by nonparametric Wilcoxon-Mann-Whitney U-criterion, p ≤ 0.05 (*)

Download (92KB)
4. Fig. 3. Effects of preincubation of slices in control without and with L-carnosine (20 mM) on acid-base level (pH) of ICR before and after the end of CW (a), grey background - optimal pH ranges (pH 7.2-7.4), at which NMDA potential amplitudes are maintained, n = 7. The effects of preincubation of slices in control without L-carnosine and with L-carnosine (20 mM) on the modification of NMDA potential amplitudes before and after CW (b), reliability of differences in pH values of freezing solution (L-carnosine 20 mM after CW) in comparison with the values before CW (control before CW without L-carnosine) were determined by nonparametric Wilcoxon-Mann-Whitney U-criterion, n = 7

Download (174KB)
5. Fig. 4. Changes in free water content (swelling - slice weight, mg) in slices under the influence of L-carnosine (20 mM) before and after CW (a), n = 5. Effects of slice swelling under the influence of L-carnosine (20 mM) on changes in NMDA potential amplitudes before and after CW (b). Differences of NMDA potential amplitudes compared to the values before CW (‘control before CW’) and after CW (‘without carnosine’ and after CW with ‘carnosine, 20 mM’) were determined by nonparametric Wilcoxon-Mann-Whitney U-test, n = 5

Download (148KB)
6. Fig. 5. Testing of L-carnosine (20 mM) for the occurrence of excitotoxicity in brain slices during warming after CS. Abscissa axis - solution temperatures at which NMDA potential amplitudes were measured, scale is irregular, n = 9. The rate of slices heating is 0.1 oC/min. Other notations are shown in the figure. Differences of NMDA potential amplitudes in relation to the values before CS (control) were determined by nonparametric Wilcoxon-Mann-Whitney U-criterion, p ≤ 0.05 (*)

Download (127KB)

Copyright (c) 2024 Russian Academy of Sciences