Influence of general cooling on the formation of adaptive reactions depending on the background level of lymphocytes with markers of early activation

Abstract

A study was carried out of the peculiarities of the formation of adaptive reactions in response to short-term general cooling in practically healthy individuals, depending on the background level of lymphocytes with markers of early activation. It has been shown that an increased background level of activated lymphocytes with receptors for IL-2 and transferrin is associated with activation of the hypothalamic-pituitary-adrenal axis, while a lower level is associated with the sympathetic-adrenal-medullary axis. Regardless of the level of lymphocyte activation, the examined patients recorded similar hemodynamic reactions associated with the preservation of thermal homeostasis and activation of thermogenesis mechanisms. A low content of lymphocytes with early activation markers increases the risk of chronic infectious processes in people living in the North due to a higher background level of general inflammation (C-reactive protein, extracellular ATP and LCR), without increasing the phagocytic and secretory activity of neutrophils, as well as increase in tissue hypoxia after cold exposure.

Full Text

Restricted Access

About the authors

V. P. Patrakeeva

N. Laverov Federal Center

Author for correspondence.
Email: patrakeewa.veronika@yandex.ru

Integrated Arctic Research of the Ural Branch of the Russian Academy of Sciences

Russian Federation, Nikolsky Ave., 20, Archangelsk, 163020

E. V. Kontievskaya

N. Laverov Federal Center

Email: patrakeewa.veronika@yandex.ru

Integrated Arctic Research of the Ural Branch of the Russian Academy of Sciences

Russian Federation, Nikolsky Ave., 20, Archangelsk, 163020

References

  1. Bergsland C. H., Jeanmougin M., Moosavi S. H., Svindland A., Bruun J., Nesbakken A., Sveen A., Ragnhild A. Spatial analysis and CD25-expression identify regulatory T cells as predictors of a poor prognosis in colorectal cancer // Lothe Modern Pathology. 2022. V. 35. № 9. P. 1236–1246.
  2. Bi B. Y., Lefebvre A. M., Dus D., Spik G., Mazurier J. Effect of lactoferrin on proliferation and differentiation of the Jurkat human lymphoblastic T cell line // Archivum Immunologiae et Therapiae Experimentalis. 1997. V. 45. P. 315–320.
  3. Blankenhaus B., Braza F., Martins R. Ferritin regulates organismal energy balance and thermogenesis // Molecular Metabolism. 2019. V. 24. P. 64–79. doi: 10.1016/j.molmet.2019.03.008
  4. Chen X., Guo W., Diao Z., Huang H., Liu W. Lymphocyte-to-C reactive protein ratio as novel inflammatory marker for predicting outcomes in hemodialysis patients: a multicenter observational study // Frontiers in Immunology. 2023. Vol. 14. P. 1101222. doi: 10.3389/fimmu.2023.1101222
  5. Dillmann E., Johnson D. G., Martin J., Mackler B., Finch C. Catecholamine elevation in iron deficiency // American Journal of Physiology. 1979. V. 237. P. R297–R300. doi: 10.1152/ajpregu.1979.237.5.R297
  6. Dobrodeeva L. K., Samodova A. V., Balashova S. N., Pashinskaya K. O. Intercellular interactions in peripheral venous blood in practically healthy residents of high // BioMed Research International. 2021. V. 2021. 11 p. doi: 10.1155/2021/7086108.
  7. Duthille I. D., Masson M., Damiens E. Lactoferrin upregulates the expression of CD4-antigen through the stimulation of the mitogen-activated protein kinase in the human lymphoblastic T Jurkat cell line // Journal of cellular biochemistry. 2000. V. 79. № 4. P. 583–593.
  8. Feng P., Yang Q., Luo L., Sun Y., Lv W., Wan S. The kinase PDK1 regulates regulatory T cell survival via controlling redox homeostasis // Theranostics. 2021. V. 11. № 19. P. 9503–18. doi: 10.7150/thno.63992
  9. Ferreira R. C., Simons H. Z., Thompson W. S., Rainbow D. B., Yang X., Cutler A. J., Oliveira J., Dopico X. C., Smyth D. J., Savinykh N., Mashar M., Vyse T. J., Dunger D. B., Baxendale H., Chandra A., Wallace C., Todd J.A, Wicker L. S., Pekalski M. L. Cells with Treg-specific FOXP3 demethylation but low CD25 are prevalent in autoimmunity // Journal of Autoimmunity. 2017. V. 84. P. 75–86. https://doi.org/10.1016/j.jaut.2017.07.009.
  10. He L., Xie X., Xue J., Zhang Z. Sex-specific differences in the effect of lymphocyte-to-C-reactive protein ratio on subclinical myocardial injury in the general population free from cardiovascular disease // Nutrition, metabolism, and cardiovascular diseases: NMCD. 2023. V. 33. № 12. P. 2389–2397. doi: 10.1016/j.numecd.2023.07.035
  11. Hwang S. A., Kruzel M. L., Actor J. K. Recombinant human lactoferrin modulates human PBMC derived macrophage responses to BCG and LPS // Tuberculosis. 2016. V. 101. P. S53–S62 https://doi.org/10.1016/j.tube.2016.09.011
  12. Jabara H. H., Boyden S. E., Chou J., Ramesh N., Massaad M. J., Benson H. A missense mutation in TFRC, encoding transferrin receptor 1, causes combined immunodeficiency // Nat Genet. 2016. V. 48. № 1. P. 74–8. doi: 10.1038/ng.3465
  13. Jang Y. S., Yang S. W., Kim T. G. Lactoferrin-derived chimeric peptide (LFch) strongly boosts TGFβ1-mediated inducible Treg differentiation possibly through downregulating TCR/CD28 signalling // Immunology. 2023. V. 168. № 1. P. 110–119. doi: 10.1111/imm.13566
  14. Jiang L., Chen H.-Y., He C.-H., Xu H.-B., Zhou Z.-R., Wu M.-S., Fodjo E. K., He Y., Hafez M. E., Qian R.-C., Li D.-W. Dual-Modal Apoptosis Assay Enabling Dynamic Visualization of ATP and Reactive Oxygen Species in Living Cells // Anal Chem. 2023. Vol. 95. № 6. P. 3507–3515. doi: 10.1021/acs.analchem.2c05671
  15. Kawabata H. Transferrin and transferrin receptors update // Free Radical Biology and Medicine. 2019. Vol. 133. P. 46–54. doi: 10.1016/j.freeradbiomed.2018.06.037
  16. Knobloch J., Casjens S., Lehnert M., Yanik S. D., Körber S., Lotz A. Exposure to welding fumes suppresses the activity of T-Helper Cells // Environ Res. 2020. V. 189. P. 109913. doi: 10.1016/j.envres.2020.109913
  17. Kobayashi D., Umemoto E., Miyasaka M. The role of extracellular ATP in homeostatic immune cell migration // Current Opinion in Pharmacology. 2023. V. 68. P. 102331. doi: 10.1016/j.coph.2022.102331
  18. Korta P., Pocheć E., Mazur-Biały A. Irisin as a multifunctional protein: implications for health and certain diseases // Medicina. 2019. V. 55. № 8. P. 485. doi: 10.3390/medicina55080485
  19. Kowalczyk P., Kaczyńska K, Kleczkowska P., Bukowska-Ośko I., Kramkowski K., Sulejczak D. The Lactoferrin Phenomenon – A Miracle Molecule // Molecules. 2022. V. 27. № 9. 2941. doi: 10.3390/molecules27092941
  20. Kunisada Y., Eikawa S., Tomonobu N., Domae S., Uehara T., Hori S., Furusawa Y., Hase K., Sasaki A. Heiichiro udono attenuation of CD4+ CD25+ regulatory T cells in the tumor microenvironment by metformin, a type 2 diabetes drug // EBioMedicine. 2017. V. 25. P. 154–164. https://doi.org/10.1016/j.ebiom.2017.10.009
  21. Liu S., Cui F., Ning K., Wang Z., Fu P., Wang D., Xu H. Role of irisin in physiology and pathology // Front Endocrinol (Lausanne). 2022. V. 13. № 962968. doi: 10.3389/fendo.2022.962968
  22. Luo J., Zhou C., Wang S., Tao S., Liao Y., Shi Z., Tang Z., Wu Y., Liu Y., Yang P. Cortisol synergizing with endoplasmic reticulum stress induces regulatory T-cell dysfunction // Immunology. 2023. V. 170. № 3. P. 334–343. doi: 10.1111/imm.13669.
  23. Marques C. R., Fiuza B. S.D., da Silva T. M., Carneiro T. C.B., Costa R. S., de Assis Silva M. F., Viana W. L.L., Carneiro V. L., Alcantara-Neves N.M., Barreto M. L., Figueiredo C. A. Impact of FOXP3 gene polymorphisms and gene-environment interactions in asthma and atopy in a Brazilian population // Gene. 2022. Vol. 838. № 146706. doi: 10.1016/j.gene.2022.146706
  24. Mazurier J., Legrand D., Hu W. L., Montreuil J., Spik G. Expression of human lactotransferrin receptors in phytohemagglutinin-stimulated human peripheral bloodlymphocytes. Isolation of the receptors by antiligand-affinity chromatography // European Journal of Biochemistry. 1989. V. 179. P. 481– 487. doi: 10.1111/j.1432-1033.1989.tb14578.x
  25. McCormick J.A., Markey G. M., Morris T. C., Auld P. W., Alexander H. D. Lactoferrin inducible monocyte cytotoxicity defective in esterase deficient monocytes // British journal of haematology. 1991. V. 77. № 3. P. 287–290. doi: 10.1111/j.1365-2141.1991.tb08572.x
  26. Mocellin M., de Azeredo Leitão L. A., de Araújo P. D., Jones M. H., Stein R. T., Pitrez P. M., de Souza A. P.D., Pinto L. A. Association between interleukin-10 polymorphisms and CD4+CD25+FOXP3+T cells in asthmatic children // Jornal de Pediatria. 2021. Vol. 97. № 5. P. 546–551. doi: 10.1016/j.jped.2020.11.008
  27. Moriyama Y., Hiasa M., Sakamoto S., Omote H., Nomura M. Vesicular nucleotide transporter (VNUT): appearance of an actress on the stage of purinergic signaling // Purinergic signalling. 2017. V. 13. № 3. P. 387–404. doi: 10.1007/s11302-017-9568-1
  28. Nogueira J. S., Gomes T. R., Secco D. A., de Almeida I. S., da Costa A. S.M.F., Cobas R. A., Costa Dos Santos G. Jr., Gomes M. B., Porto L. C. Type 1 Diabetes Brazilian patients exhibit reduced frequency of recent thymic emigrants in regulatory CD4+CD25+Foxp3+T cells // Immunology Letters. 2024. Vol. 267. № 106857. doi: 10.1016/j.imlet.2024.106857
  29. Nguyen T. K.T., Niaz Z., Kruzel M. L., Actor J. K. Recombinant Human Lactoferrin Reduces Inflammation and Increases Fluoroquinolone Penetration to Primary Granulomas during Mycobacterial Infection of C57Bl/6 // Arch Immunol Ther Exp (Warsz). 2023. V. 70. № 1. 9. doi: 10.1007/s00005-022-00648-7
  30. Qian F., Zhou W., Liu Y., Ge Z., Lai J., Zhao Z., Feng Y., Lin L., Shen Y., Zhang Z., Zhang W., Fan T., Zhao Y., Chen Z. High C-reactive protein to lymphocyte ratio predicts mortality outcomes of patients with severe fever suffering from thrombocytopenia syndrome: a multi-centre study in China // Journal of Medical Virology. 2023. V. 95. № 2. e28546. doi: 10.1002/jmv.28546
  31. Sawada K., Echigo N., Juge N., Miyaji T., Otsuka M., Omote H., Yamamoto A., Moriyama Y. Identification of a vesicular nucleotide transporter // Proceedings of the National Academy of Sciences of the United States of America. 2008. V. 105. P. 5683–5686. doi: 10.1073/pnas.0800141105
  32. Vanoaica L., Richman L., Jaworski M., Darshan D., Luther S. A., Kühn L. C. Conditional deletion of ferritin h in mice reduces B and T lymphocyte populations // PloS One. 2014. V. 9. № 2. P. e89270. doi: 10.1371/journal.pone.0089270
  33. Vuillaume L. A., Lefebvre F., Benhamed A., Schnee A., Hoffmann M., Falcao F. G., Haber N., Sabah J., Lavoignet C. E., Borgne P. L. Lymphocyte-to-C-Reactive protein (LCR) ratio is not accurate to predict severity and mortality in patients with COVID-19 admitted to the ED // International Journal of Molecular Sciences. 2023. V. 24. № 6. P. 5996. doi: 10.3390/ijms24065996.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Example of a cytofluorogram when assessing the level of lymphocytes with CD25+ and CD71+ markers (first cluster)

Download (22KB)
3. Fig. 2. An example of a cytofluorogram when assessing the level of lymphocytes with CD25+ and CD71+ markers (second cluster)

Download (24KB)
4. Fig. 3. Concentration of catecholamines and cortisol in groups depending on the level of activated cells, * – p < 0.05, *** – p < 0.01

Download (28KB)
5. Fig. 4. The content of lymphocytes with signs of apoptosis and necrotic cells in groups depending on the level of activated cells, ** – p < 0.01

Download (22KB)
6. Fig. 5. Content of ferritin, lactoferrin and transferrin in groups depending on the level of activated cells, ** – p < 0.01

Download (26KB)
7. Fig. 6. Change in arterial pressure in groups depending on the level of activated cells, ** – p < 0.01

Download (26KB)
8. Fig. 7. Leukocyte levels in peripheral blood before and after general cooling, ** – p < 0.01, reliability of differences within groups

Download (24KB)
9. Fig. 8. Concentrations of iron-containing proteins before and after general cooling, ** – p < 0.01, significance of differences within groups.

Download (44KB)

Copyright (c) 2025 Russian Academy of Sciences