ЗАДАЧА ГРАНИЧНОГО УПРАВЛЕНИЯ СМЕЩЕНИЕМ НА ДВУХ КОНЦАХ ПРОЦЕССОМ КОЛЕБАНИЯ СТЕРЖНЯ, СОСТОЯЩЕГО ИЗ ДВУХ УЧАСТКОВ РАЗНОЙ ПЛОТНОСТИ И УПРУГОСТИ
- Авторы: Барсегян В.Р.1,2
- 
							Учреждения: 
							- Институт механики НАН Армении
- Ереванский государственный университет
 
- Выпуск: № 2 (2023)
- Страницы: 125-135
- Раздел: Статьи
- URL: https://kld-journal.fedlab.ru/1026-3519/article/view/672831
- DOI: https://doi.org/10.31857/S0572329922600517
- EDN: https://elibrary.ru/DGCRJE
- ID: 672831
Цитировать
Полный текст
 Открытый доступ
		                                Открытый доступ Доступ предоставлен
						Доступ предоставлен Доступ платный или только для подписчиков
		                                							Доступ платный или только для подписчиков
		                                					Аннотация
Рассмотрена задача граничного управления для одномерного волнового уравнения с кусочно-постоянными характеристиками. При этом полагается, что время прохождения волны через каждый однородный участок одинаково. Управление осуществляется смещением на двух концах. Предложен конструктивный подход построения управляющего воздействия с заданными начальным и конечным условиями. Схема построения заключается в следующем: исходная задача сводится к задаче управления распределенными воздействиями с нулевыми граничными условиями. Далее используется метод разделения переменных и методы теории управления конечномерными системами. Полученные результаты иллюстрируются на конкретном примере.
Об авторах
В. Р. Барсегян
Институт механики НАН Армении; Ереванский государственный университет
							Автор, ответственный за переписку.
							Email: barseghyan@sci.am
				                					                																			                												                								Армения, Ереван; Армения, Ереван						
Список литературы
- Бутковский А.Г. Методы управления системами с распределенными параметрами. М.: Наука, 1975. 568 с.
- Barseghyan V.R. The control problem for stepwise changing linear systems of loaded differential equations with unseparated multipoint intermediate conditions // Mech. Solids. 2018. V. 53. № 6. P. 615–622. https://doi.org/10.21538/0134-4889-2019-25-3-24-33
- Barseghyan V.R. The problem of optimal control of string vibrations // Int. Appl. Mech. 2020. V. 56. № 4. P. 471–480. https://doi.org/10.1007/s10778-020-01030-w
- Barseghyan V.R. The problem of optimal control of vibrations of a string with non-separated conditions into state functions at given intermediate time instants // Autom. Remote Control. 2020. V. 81. № 2. P. 226–235. https://doi.org/10.31857/S0005231020020038
- Barseghyan V., Solodusha S. Optimal boundary control of string vibrations with given shape of deflection at a certain moment of time // Mathematical Optimization Theory and Operations Research. MOTOR 2021. Lecture Notes in Computer Science. V. 12755 / Ed. by P. Pardalos, M. Khachay, A. Kazakov. Cham: Springer, 2021. P. 299–313. https://doi.org/10.1007/978-3-030-77876-7_20
- Ильин В.А. Оптимизация граничного управления колебаниями стержня, состоящего из двух разнородных участков // Доклады РАН. 2011. Т. 440. № 2. С. 159–163.
- Ильин В.А. О приведении в произвольно заданое состояние колебаний первоначально покоящегося стержня, состоящего из двух разнородных участков // Доклады РАН. 2010. Т. 435. № 6. С. 732–735.
- Егоров А.И., Знаменская Л.Н. Об управляемости упругих колебаний последовательно соединенных объектов с распределенными параметрами // Тр. ИММ УрО РАН. 2011. Т. 17. № 1. С. 85–92.
- Провоторов В.В. Построение граничных управлений в задаче о гашении колебаний системы струн // Вестн. Санкт-Петерб. ун-та. Сер. 1. С. 62–71.Вып. 1.
- Amara J. Ben, Bouzidi H. Null boundary controllability of a one-dimensional heat equation with an internal point mass and variable coefficients // J. Math. Phys. 2018. V. 59. № 1. P. 011512. https://doi.org/10.1063/1.5021947
- Amara J. Ben, Beldi E. Boundary controllability of two vibrating strings connected by a point mass with variable coefficients // SIAM J. Control Optim. 2019. V. 57. № 5. P. 3360–3387. https://doi.org/10.1137/16M1100496
- Mercier D., Régnier V. Boundary controllability of a chain of serially connected Euler-Bernoulli beams with interior masses // Collect. Math. 2009. V. 60. № 3. P. 307–334. https://doi.org/10.1007/BF03191374
- Кулешов А.А. Смешанные задачи для уравнения продольных колебаний неоднородного стержня и уравнения поперечных колебаний неоднородной струны, состоящих из двух участков разной плотности и упругости // Доклады РАН. 2012. Т. 442. № 5. С. 594–597.
- Кулешов A.A. Смешанные задачи для уравнения продольных колебаний неоднородного стержня со свободным либо закрепленным правым концом, состоящего из двух участков разной плотности и упругости // Доклады РАН. 2012. Т. 442. № 4. С. 451–454.
- Рогожников А.М. Исследование смешанной задачи, описывающей процесс колебаний стержня, состоящего из нескольких участков, при условии совпадения времени прохождения волны по каждому из этих участков // Доклады РАН. 2011. Т. 441. № 4. С. 449–451.
- Рогожников А.М. Исследование смешанной задачи, описывающей процесс колебаний стержня, состоящего из нескольких участков с произвольными длинами // Доклады РАН. 2012. Т. 444. С. 488–491.
- Аниконов Д.С., Коновалова Д.С. Прямая и обратная задачи для волнового уравнения с разрывными коэффициентами // Науч.-тех. ведом. СПбГПУ. Физ.-мат. науки. 2018. Т. 11. № 2. С. 61–72.
- Смирнов И.Н. Смешанные задачи для телеграфного уравнения, в случае системы, состоящей из двух участков, имеющих разные плотности и разные упругости, но одинаковые импедансы // Доклады РАН. 2010. Т. 435. № 2. С. 172–177.
- Зверева М.Б., Найдюк Ф.О., Залукаева Ж.О. Моделирование колебаний сингулярной струны // Вестн. Воронеж. гос. ун-та. Сер.: Физ., мат. 2014. № 2. С. 111–119.
- Холодовский С.Е., Чухрий П.А. Задача о движении неограниченной кусочно-однородной струны // Уч. зап. Забайкальск. гос. ун-та. Сер. Физ. мат. техн. технол. 2018. Т. 13. № 4. С. 42–50. https://doi.org/10.21209/2308-8761-2018-13-4-42-50
- Барсегян В.Р. Управление составных динамических систем и систем с многоточечными промежуточными условиями. М.: Наука, 2016. 230 с.
- Зубов В.И. Лекции по теории управления. М.: Наука, 1975. 496 с.
Дополнительные файлы
 
				
			 
						 
					 
						 
						 
						 
									

 
  
  
  Отправить статью по E-mail
			Отправить статью по E-mail 

