5-HT7 Receptors: New Horizons in the Therapy of Neuropsychiatric and Neurodegenerative Diseases

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The 5-HT₇ receptor, one of the most recently discovered members of the serotonin receptor family, plays a pivotal role in regulating central nervous system processes. Over the past three decades, substantial research has provided insights into its gene, expression patterns, molecular structure, and pharmacological properties. The 5-HT₇ receptor is involved in thermoregulation, sleep, circadian rhythms, and mood regulation, attracting increasing attention as a promising target for the treatment of depressive disorders, Alzheimer’s disease, and Parkinson’s disease. In this review, based on a systematic analysis of publications from 1993–2024, with a predominant focus on studies from the last decade in PubMed, Scopus and Web of Science databases, we provide an in-depth discussion of the functional characteristics of the 5-HT₇ receptor, its pharmacological profile, and current hypothetical models and molecular interactions that enhance our understanding of its unique role in neurophysiological regulation. Special attention is given to the therapeutic potential of the 5-HT₇ receptor in neuropsychiatric and neurodegenerative diseases.

Full Text

Restricted Access

About the authors

A. Ya. Rodnyy

Institute of Cytology and Genetics, Siberian Branch of RAS

Author for correspondence.
Email: aleksandr1994rodny@gmail.com
Russian Federation, Novosibirsk

V. S. Naumenko

Institute of Cytology and Genetics, Siberian Branch of RAS

Email: aleksandr1994rodny@gmail.com
Russian Federation, Novosibirsk

References

  1. Pytliak M., Vargová V., Mechírová V., Felšöci M. // Physiological Research. 2011. V. 60. № 1. P. 15–25.
  2. Barnes N.M., Ahern G.P., Becamel C., Bockaert J., Camilleri M., Chaumont-Dubel S., Claeysen S., Cunningham K.A., Fone K.C., Gershon M., Di Giovanni G., Goodfellow N.M., Halberstadt A.L., Hartley R.M., Hassaine G., Herrick-Davis K., Hovius R., Lacivita E., Lambe E.K., Leopoldo M., Levy F.O., Lummis S.C.R., Marin P., Maroteaux L., McCreary A.C., Nelson D.L., Neumaier J.F., Newman-Tancredi A., Nury H., Roberts A., Roth B.L., Roumier A., Sanger G.J., Teitler M., Sharp T., Villalón C.M., Vogel H., Watts S.W., Hoyer D. // Pharmacological Reviews. 2021. V. 73. № 1. P. 310–520.
  3. Sharp T., Barnes N.M. // Neuropharmacology. 2020. V. 177. № May. P. 108155–108155.
  4. Reynolds G.P., McGowan O.O., Dalton C.F. // Br J Clin Pharmacol. 2014. V. 77. № 4. P. 654–672.
  5. O’Leary O.F., Codagnone M.G., Cryan J.F. // The Behavioral Genetics of Serotonin: Relevance to Anxiety and Depression. 2020. V. 21. P. 749–789
  6. Ruat M., Traiffort E., Leurs R., Tardivel-Lacombe J., Diaz J., Arrang J.M., Schwartz J.C. // Proceedings of the National Academy of Sciences of the United States of America. 1993. V. 90. № 18. P. 8547–8551.
  7. Labus J., Röhrs K.F., Ackmann J., Varbanov H., Müller F.E., Jia S., Jahreis K., Vollbrecht A. L., Butzlaff M., Schill Y., Guseva D., Böhm K., Kaushik R., Bijata M., Marin P., Chaumont-Dubel S., Zeug A., Dityatev A., Ponimaskin E. // Prog Neurobiol. 2021. V. 197. P. 101900.
  8. Ackmann J., Bruge A., Gotina L., Lim S., Jahreis K., Vollbrecht A.L., Kim Y.K., Pae A.N., Labus J., Ponimaskin E. // Cell Commun Signal. 2024. V. 22. № 1. P. 233.
  9. Molobekova C.A., Kondaurova E.M., Ilchibaeva T.V., Rodnyy A.Y., Stefanova N.A., Kolosova N.G., Naumenko V.S. // Curr Alzheimer Res. 2023. V. 20. № 7. P. 496–505.
  10. Ciranna L., Catania M.V. // Front Cell Neurosci. 2014. V. 8. P. 250.
  11. Gąssowska-Dobrowolska M., Kolasa-Wołosiuk A., Cieślik M., Dominiak A., Friedland K., Adamczyk A. // Int J Mol Sci. 2021. V. 22. № 6. P. 3209
  12. Costa L., Tempio A., Lacivita E., Leopoldo M., Ciranna L. // Eur J Neurosci. 2021. V. 54. № 1. P. 4124–32.
  13. Rodnyy A.Y., Kondaurova E.M., Bazovkina D.V., Kulikova E.A., Ilchibaeva T.V., Kovetskaya A.I., Baraboshkina I.A., Bazhenova E.Y., Popova N.K., Naumenko V.S. // Journal of Neuroscience Research. 2022. V. 100. P. 25055.
  14. Okubo R., Hasegawa T., Fukuyama K., Shiroyama T., Okada M. // Frontiers in Psychiatry. 2021. V. 12. № February. P. 1–16.
  15. Gottlieb N., Li T.Y., Young A.H., Stokes P.R. // J Psychopharmacol. 2023. V. 37. № 12. P. 1167–1181.
  16. Bijata M., Labus J., Guseva D., Stawarski M., Butzlaff M., Dzwonek J., Schneeberg J., Böhm K., Michaluk P., Rusakov D.A., Dityatev A., Wilczyński G., Wlodarczyk J., Ponimaskin E. // Cell Rep. 2017. V. 19. № 9. P. 1767–1782.
  17. Göthert M. // Pharmacological Reports. 2013. V. 65. № 4. P. 771–786.
  18. Andrews P.W., Bharwani A., Lee K.R., Fox M., Thomson J.A. // Neuroscience and Biobehavioral Reviews. 2015. V. 51. P. 164–188.
  19. Mengod G., Vilaró M.T., Cortés R., López-Giménez J.F., Raurich A., Palacios J.M. // Chemical Neuroanatomy of 5-HT Receptor Subtypes in the Mammalian Brain. 2006.
  20. Baganz N.L., Blakely R.D. // ACS Chem Neurosci. 2013. V. 4. № 1. P. 48–63.
  21. Mengod G., Cortés R., Vilaró M.T., Hoyer D. // Handbook of Behavioral Neuroscience. 2010. V. 21. P. 123–138.
  22. Hazra R., Guo J.D., Dabrowska J., Rainnie D.G. // Neuroscience. 2012. V. 225. P. 9–21.
  23. Berger M., Gray J.A., Roth B.L. // Annual Review of Medicine. 2009. V. 60. № 1. P. 355–366.
  24. Nikiforuk A. // CNS Drugs. 2015. V. 29. № 4. P. 265–275.
  25. Carhart-Harris R.L., Nutt D.J. // Journal of Psychopharmacology. 2017. V. 31. № 9. P. 1091–1120.
  26. Kraus C., Castrén E., Kasper S., Lanzenberger R. // Neuroscience & Biobehavioral Reviews. 2017. V. 77. P. 317–326.
  27. Coplan J.D., Gopinath S., Abdallah C.G., Berry B.R. // Frontiers in Behavioral Neuroscience. 2014. V. 8. № May. P. 1–16.
  28. Renner U., Zeug A., Woehler A., Niebert M., Dityatev A., Dityateva G., Gorinski N., Guseva D., Abdel-Galil D., Fröhlich M., Döring F., Wischmeyer E., Richter D.W., Neher E., Ponimaskin E.G. // Journal of Cell Science. 2012. V. 125. № 10. P. 2486–2499.
  29. Naumenko V.S., Popova N.K., Lacivita E., Leopoldo M., Ponimaskin E.G. // CNS Neuroscience and Therapeutics. 2014. V. 20. № 7. P. 582–590.
  30. Bard J.A., Zgombick J., Adham N., Vaysse P., Branchek T.A., Weinshank R.L. // The Journal of Biological Chemistry. 1993. V. 268. № 31. P. 23422–23426.
  31. Lovenberg T.W., Baron B.M., de Lecea L., Miller J.D., Prosser R.A., Rea M.A., Foye P.E., Racke M., Slone A.L., Siegel B.W. // Neuron. 1993. V. 11. № 3. P. 449–458.
  32. Plassat J.L., Amlaiky N., Hen R. // Molecular Pharmacology. 1993. V. 44. № 2. P. 229–236.
  33. Bhalla P., Saxena P.R., Sharma H.S. // Molecular and Cellular Biochemistry. 2002. V. 238. № 1–2. P. 81–88.
  34. Blattner K.M., Canney D.J., Pippin D.A., Blass B.E. // ACS Chemical Neuroscience. 2019. V. 10. № 1. P. 89–119.
  35. Heidmann D.E., Szot P., Kohen R., Hamblin M.W. // Neuropharmacology. 1998. V. 37. № 12. P. 1621–1632.
  36. Heidmann D.E., Metcalf M.A., Kohen R., Hamblin M.W. // J Neurochem. 1997. V. 68. № 4. P. 1372–81.
  37. Guthrie C.R., Murray A.T., Franklin A.A., Hamblin M.W. // The Journal of Pharmacology and Experimental Therapeutics. 2005. V. 313. № 3. P. 1003–1010.
  38. Thomas D.R., Atkinson P.J., Hastie P.G., Roberts J.C., Middlemiss D.N., Price G.W. // Neuropharmacology. 2002. V. 42. № 1. P. 74–81.
  39. Leopoldo M., Lacivita E., Berardi F., Perrone R., Hedlund P.B. // Pharmacology & Therapeutics. 2011. V. 129. № 2. P. 120–148.
  40. Kondaurova E.M., Bazovkina D.V., Naumenko V.S. // Molecular Biology. 2017. V. 51. № 1. P. 157–165.
  41. Roth B.L., Craigo S.C., Choudhary M.S., Uluer A., Monsma F.J. Jr., Shen Y., Meltzer H.Y., Sibley D.R. // The Journal of Pharmacology and Experimental Therapeutics. 1994. V. 268. № 3. P. 1403–1410.
  42. Meltzer H.Y. // CNS Neurol Disord Drug Targets. 2017. V. 16. № 8. P. 900–906.
  43. Bourson A., Kapps V., Zwingelstein C., Rudler A., Boess F.G., Sleight A.J. // Naunyn-Schmiedeberg’s Archives of Pharmacology. 1997. V. 356. № 6. P. 820–826.
  44. Viguier F., Michot B., Hamon M., Bourgoin S. // European Journal of Pharmacology. 2013. V. 716. № 1–3. P. 8–16.
  45. Silberstein S.D. // Headache. 1994. V. 34. № 7. P. 408–417.
  46. Hauser S.R., Hedlund P.B., Roberts A.J., Sari Y., Bell R.L., Engleman E.A. // Frontiers in Neuroscience. 2015. V. 9. № JAN. P. 1–9.
  47. Impellizzeri A.A.R., Pappalardo M., Basile L., Manfra O., Andressen K.W., Krobert K.A., Messina A., Levy F.O., Guccione S. // Frontiers in Behavioral Neuroscience. 2015. V. 9. № MAY. P. 1–12.
  48. McCorvy J.D., Roth B.L. // Pharmacology and Therapeutics. 2015. V. 150. P. 129–142.
  49. Jumper J., Evans R., Pritzel A., Green T., Figurnov M., Ronneberger O., Tunyasuvunakool K., Bates R., Žídek A., Potapenko A., Bridgland A., Meyer C., Kohl S.A.A., Ballard A.J., Cowie A., Romera-Paredes B., Nikolov S., Jain R., Adler J., Back T., Petersen S., Reiman D., Clancy E., Zielinski M., Steinegger M., Pacholska M., Berghammer T., Bodenstein S., Silver D., Vinyals O., Senior A.W., Kavukcuoglu K., Kohli P., Hassabis D. // Nature. 2021. V. 596. № 7873. P. 583–589.
  50. Varadi M., Anyango S., Deshpande M., Nair S., Natassia C., Yordanova G., Yuan D., Stroe O., Wood G., Laydon A., Žídek A., Green T., Tunyasuvunakool K., Petersen S., Jumper J., Clancy E., Green R., Vora A., Lutfi M., Figurnov M., Cowie A., Hobbs N., Kohli P., Kleywegt G., Birney E., Hassabis D., Velankar S. // Nucleic Acids Res. 2022. V. 50. № D1. P. D439–D444.
  51. Huang S., Xu P., Shen D.D., Simon I.A., Mao C., Tan Y., Zhang H., Harpsøe K., Li H., Zhang Y., You C., Yu X., Jiang Y., Zhang Y., Gloriam D. E., Xu H.E. // Mol Cell. 2022. V. 82. № 14. P. 2681–2695.e6.
  52. Berman H.M., Westbrook J., Feng Z., Gilliland G., Bhat T.N., Weissig H., Shindyalov I.N., Bourne P.E. // Nucleic Acids Res. 2000. V. 28. № 1. P. 235–42.
  53. Choi C., Helfman D.M. // Oncogene. 2014. V. 33. № 28. P. 3668–3676.
  54. Guseva D., Wirth A., Ponimaskin E. // Frontiers in Behavioral Neuroscience. 2014. V. 8. P. 1–8.
  55. Kvachnina E., Liu G., Dityatev A., Renner U., Dumuis A., Richter D.W., Dityateva G., Schachner M., Voyno-Yasenetskaya T. A., Ponimaskin E. G. // J Neurosci. 2005. V. 25. № 34. P. 7821–30.
  56. Kobe F., Guseva D., Jensen T.P., Wirth A., Renner U., Hess D., Müller M., Medrihan L., Zhang W., Zhang M., Braun K., Westerholz S., Herzog A., Radyushkin K., El-Kordi A., Ehrenreich H., Richter D.W., Rusakov D.A., Ponimaskin E. // Journal of Neuroscience. 2012. V. 32. № 9. P. 2915–2930.
  57. Kelly P., Casey P.J., Meigs T.E. // Biochemistry. 2007. V. 46. № 23. P. 6677–87.
  58. Speranza L., Labus J., Volpicelli F., Guseva D., Lacivita E., Leopoldo M., Bellenchi G.C., di Porzio U., Bijata M., Perrone-Capano C., Ponimaskin E. // Journal of Neurochemistry. 2017. V. 141. № 5. P. 647–661.
  59. Hadjighassem M.R., Galaraga K., Albert P.R. // Eur J Neurosci. 2011. V. 33. № 2. P. 214–23.
  60. Laenen K., Haegeman G., Vanhoenacker P. // Gene. 2007. V. 391. № 1–2. P. 252–63.
  61. Volpicelli F., Speranza L., Pulcrano S., De Gregorio R., Crispino M., De Sanctis C., Leopoldo M., Lacivita E., di Porzio U., Bellenchi G.C., Perrone-Capano C. // Mol Neurobiol. 2019. V. 56. № 12. P. 8617–8627.
  62. Wei Y.B., McCarthy M., Ren H., Carrillo-Roa T., Shekhtman T., DeModena A., Liu J.J., Leckband S.G., Mors O., Rietschel M., Henigsberg N., Cattaneo A., Binder E.B., Aitchison K.J., Kelsoe J.R. // Mol Psychiatry. 2020. V. 25. № 6. P. 1312–1322.
  63. Backstrom J.R., Price R.D., Reasoner D.T., Sanders-Bush E. // J Biol Chem. 2000. V. 275. № 31. P. 23620–6.
  64. Turner J.H., Raymond J.R. // J Biol Chem. 2005. V. 280. № 35. P. 30741–50.
  65. Gellynck E., Heyninck K., Andressen K.W., Haegeman G., Levy F.O., Vanhoenacker P., Van Craenenbroeck K. // Experimental Brain Research. 2013. V. 230. № 4. P. 555–568.
  66. Gellynck E., Andressen K.W., Lintermans B., Haegeman G., Levy F.O., Vanhoenacker P., Van Craenenbroeck K. // The FEBS Journal. 2012. V. 279. № 11. P. 1994–2003.
  67. Bijata M., Baczynska E., Muller F.E., Bijata K., Masternak J., Krzystyniak A., Szewczyk B., Siwiec M., Antoniuk S., Roszkowska M., Figiel I., Magnowska M., Olszynski K.H., Wardak A.D., Hogendorf A., Ruszczycki B., Gorinski N., Labus J., Stepien T., Tarka S., Bojarski A.J., Tokarski K., Filipkowski R.K., Ponimaskin E., Wlodarczyk J. // Cell Rep. 2022. V. 38. № 11. P. 110532.
  68. De Martelaere K., Lintermans B., Haegeman G., Vanhoenacker P. // Cell Signal. 2007. V. 19. № 2. P. 278–88.
  69. Matthys A., Van Craenenbroeck K., Lintermans B., Haegeman G., Vanhoenacker P. // Cell Signal. 2012. V. 24. № 5. P. 1053–63.
  70. Stroth N., Svenningsson P. // Eur Neuropsychopharmacol. 2015. V. 25. № 12. P. 2372–80.
  71. Devi L.A. // Trends in Pharmacological Sciences. 2001. V. 22. № 10. P. 532–537.
  72. Bulenger S., Marullo S., Bouvier M. // Trends in Pharmacological Sciences. 2005. V. 26. № 3. P. 131–137.
  73. Ilchibaeva T., Tsybko A., Zeug A., Müller F.E., Guseva D., Bischoff S., Ponimaskin E., Naumenko V. // Cells. 2022. V. 11. № 15. P. 2384
  74. Smith C., Toohey N., Knight J.A., Klein M.T., Teitler M. // Mol Pharmacol. 2011. V. 79. № 2. P. 318–25.
  75. Teitler M., Toohey N., Knight J.A., Klein M.T., Smith C. // Psychopharmacology (Berl). 2010. V. 212. № 4. P. 687–97.
  76. Teitler M., Klein M.T. // Pharmacol Ther. 2012. V. 133. № 2. P. 205–17.
  77. Bijata M., Wirth A., Wlodarczyk J., Ponimaskin E. // J Cell Sci. 2024. V. 137. № 19. P. 1–12
  78. Jolas T., Haj-Dahmane S., Kidd E.J., Langlois X., Lanfumey L., Fattaccini C.M., Vantalon V., Laporte A.M., Adrien J., Gozlan H. // The Journal of Pharmacology and Experimental Therapeutics. 1994. V. 268. № 3. P. 1432–1443.
  79. Stiedl O., Pappa E., Konradsson-Geuken Å., Ögren S.O. // Frontiers in Pharmacology. 2015. V. 6. № Aug. P. 1–17.
  80. Eriksson T.M., Holst S., Stan T.L., Hager T., Sjögren B., Ögren S., Svenningsson P., Stiedl O. // Neuropharmacology. 2012. V. 63. № 6. P. 1150–60.
  81. Demireva E.Y., Xie H., Flood E.D., Thompson J.M., Seitz B.M., Watts S.W. // Physiological Genomics. 2019. V. 51. № 7. P. 290–301.
  82. Brenchat A., Rocasalbas M., Zamanillo D., Hamon M., Vela J.M., Romero L. // Adv Pharmacol Sci. 2012. V. 2012. Article ID 312041
  83. Naumenko V.S., Kondaurova E.M., Popova N.K. // Neuropharmacology. 2011. V. 61. № 8. P. 1360–1365.
  84. Hannon J., Hoyer D. // Serotonin and Sleep: Molecular, Functional and Clinical Aspects. 2008. V. 195. P. 155–182.
  85. Brenchat A., Romero L., García M., Pujol M., Burgueño J., Torrens A., Hamon M., Baeyens J.M., Buschmann H., Zamanillo D., Vela J.M. // Pain. 2009. V. 141. № 3. P. 239–247.
  86. Hedlund P.B., Carson M.J., Sutcliffe J.G., Thomas E.A. // Biochem Pharmacol. 1999. V. 58. № 11. P. 1807–1813.
  87. Kułaga D., Drabczyk A.K., Satała G., Latacz G., Rózga K., Plażuk D., Jaśkowska J. // European Journal of Medicinal Chemistry. 2022. V. 227. P. 1–14.
  88. Satala G., Duszynska B., Lenda T., Nowak G., Bojarski A.J. // Mol Neurobiol. 2018. V. 55. № 4. P. 2897–2910.
  89. Kwon Y.H., Blass B.E., Wang H., Grondin J.A., Banskota S., Korzekwa K., Ye M., Gordon J.C., Colussi D., Blattner K.M., Canney D.J., Khan W.I. // Am J Physiol Gastrointest Liver Physiol. 2024. V. 327. № 1. P. G57–G69.
  90. Kucwaj-Brysz K., Baltrukevich H., Czarnota K., Handzlik J. // Bioorg Med Chem Lett. 2021. V. 49. P. 128275.
  91. Kucwaj-Brysz K., Bas S., Zeslawska E., Podlewska S., Jastrzebska-Wiesek M., Partyka A., Nitek W., Satala G., Wesolowska A., Handzlik J. // ACS Chem Neurosci. 2024. V. 15. № 21. P. 3884–3900.
  92. Kurczab R., Canale V., Zajdel P., Bojarski A.J. // PLoS One. 2016. V. 11. № 6. P. e0156986.
  93. Kurczab R., Bojarski A.J. // J Chem Inf Model. 2013. V. 53. № 12. P. 3233–3243.
  94. Quiedeville A., Boulouard M., Hamidouche K., Da Silva Costa-Aze V., Nee G., Rochais C., Dallemagne P., Fabis F., Freret T., Bouet V. // Behav Brain Res. 2015. V. 293. P. 10–17.
  95. Matthys A., Haegeman G., Van Craenenbroeck K., Vanhoenacker P. // Molecular Neurobiology. 2011. V. 43. № 3. P. 228–253.
  96. Frampton J.E. // Drugs. 2016. V. 76. № 17. P. 1675–1682.
  97. Hedlund P.B., Huitron-Resendiz S., Henriksen S.J., Sutcliffe J.G. // Biol Psychiatry. 2005. V. 58. № 10. P. 831–837.
  98. Mnie-Filali O., Faure C., Lambás-Señas L., El Mansari M., Belblidia H., Gondard E., Etiévant A., Scarna H., Didier A., Berod A., Blier P., Haddjeri N. // Neuropsychopharmacology. 2011. V. 36. № 6. P. 1275–1288.
  99. Fukuyama K., Motomura E., Okada M. // Int J Mol Sci. 2023. V. 24. № 3. P. 1–12
  100. Tsuji M., Takeuchi T., Miyagawa K., Takeda H. // Nihon shinkei seishin yakurigaku zasshi = Japanese Journal of Psychopharmacology. 2012. V. 32. № 4. P. 187–193.
  101. Adriani W., Travaglini D., Lacivita E., Saso L., Leopoldo M., Laviola G. // Neuropharmacology. 2012. V. 62. № 2. P. 833–842.
  102. Canese R., Zoratto F., Altabella L., Porcari P., Mercurio L., de Pasquale F., Butti E., Martino G., Lacivita E., Leopoldo M., Laviola G., Adriani W. // Psychopharmacology. 2015. V. 232. № 1. P. 75–89.
  103. Ohmura Y., Yoshida T., Konno K., Minami M., Watanabe M., Yoshioka M. // Int J Neuropsychopharmacol. 2016. V. 19. № 6. P. 1–12
  104. Canal C.E., Felsing D.E., Liu Y., Zhu W., Wood J.T., Perry C.K., Vemula R., Booth R.G. // ACS Chem Neurosci. 2015. V. 6. № 7. P. 1259–1270.
  105. Khodaverdi M., Rahdar M., Davoudi S., Hajisoltani R., Tavassoli Z., Ghasemi Z., Amini A. E., Hosseinmardi N., Behzadi G., Janahmadi M. // Neurobiology of Learning and Memory. 2021. V. 183. P. 107462.
  106. Costa L., Spatuzza M., D’Antoni S., Bonaccorso C.M., Trovato C., Musumeci S.A., Leopoldo M., Lacivita E., Catania M. V., Ciranna L. // Biol Psychiatry. 2012. V. 72. № 11. P. 924–933.
  107. De Filippis B., Chiodi V., Adriani W., Lacivita E., Mallozzi C., Leopoldo M., Domenici M.R., Fuso A., Laviola G. // Front Behav Neurosci. 2015. V. 9. P. 86.
  108. De Filippis B., Nativio P., Fabbri A., Ricceri L., Adriani W., Lacivita E., Leopoldo M., Passarelli F., Fuso A., Laviola G. // Neuropsychopharmacology. 2014. V. 39. № 11. P. 2506–2518.
  109. Lee J., Avramets D., Jeon B., Choo H. // Molecules. 2021. V. 26. № 11. P. 3348
  110. Solas M., Van Dam D., Janssens J., Ocariz U., Vermeiren Y., De Deyn P.P., Ramirez M.J. // Neurochem Int. 2021. V. 150. P. 105185.
  111. Wang Y., Mandelkow E. // Nat Rev Neurosci. 2016. V. 17. № 1. P. 5–21.
  112. Hashemi-Firouzi N., Komaki A., Soleimani Asl S., Shahidi S. // Brain Res Bull. 2017. V. 135. P. 85–91.
  113. Shahidi S., Asl S. S., Komaki A., Hashemi-Firouzi N. // Psychopharmacology (Berl). 2018. V. 235. № 5. P. 1513–1525.
  114. Jacobs B. L., Azmitia E. C. // Physiol Rev. 1992. V. 72. № 1. P. 165–229.
  115. Wang S., Zhao Y., Gao J., Guo Y., Wang X., Huo J., Wei P., Cao J. // Am J Alzheimers Dis Other Demen. 2017. V. 32. № 2. P. 73–81.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Structure of the 5-HT₇ receptor. (a) Predicted structure of the human 5-HT₇ receptor (AF-P34969-F1-model-v4) using the AlphaFold neural network [49, 50]. (b) Structure of the human 5-HT₇ receptor (PDB ID: P34969) and the G protein subunit complex determined by cryo-electron microscopy [51, 52]. (c) The difference in the length of TM5 and TM6 regulates the receptor's preference for Gₛ or Gᵢ proteins.

Download (376KB)
3. Fig. 2. Schematic representation of the signaling pathways regulated by the 5-HT₇ receptor. Gₛ protein-mediated effects are shown on the left. A summary of G₁₂ protein-mediated signaling processes is shown on the right. Abbreviations: AC, adenylate cyclase; cAMP, cyclic adenosine monophosphate; PKA, protein kinase A; ERK1/2, extracellular signal-regulated kinases; Akt, protein kinase B, Hsp90, heat shock protein 90; ERM, ezrin-radixin-moesin family proteins; GEF, guanine nucleotide exchange factor; nRTK, non-receptor tyrosine kinases; mTOR, mammalian target of rapamycin; AKAPs, A-anchoring proteins. ZO – tight junction proteins; SRF – serum response factor; SRE – serum response element. Adapted from [54] with modifications.

Download (397KB)
4. Fig. 3. Mechanisms of expression regulation and post-translational modification of the 5-HT₇ receptor. Transcription factors Sp1 and Sp3 activate HTR7 gene expression through the GC-rich promoter region. The SNP variant rs7905446 (GG/TG) enhances transcription. MicroRNA-29a (miR-29a) reduces the level of HTR7 mRNA, suppressing receptor expression. Post-translational modifications include phosphorylation, N-glycosylation, and palmitoylation and affect the functional activity of the receptor.

Download (267KB)
5. Fig. 4. Physiological meaning of heterodimerization of 5-HT1A and 5-HT₇ receptors in the midbrain. Under physiological conditions, a balance is maintained between 5-HT1A/5-HT1A homodimers and 5-HT1A/5-HT₇ heterodimers, which ensures normal serotonin levels. In depression, an imbalance in the dimer structure is observed, with a predominance of 5-HT1A/5-HT1A homodimers, leading to a decrease in the serotonin level in the synaptic cleft. Overexpression of 5-HT₇ receptors increases the number of 5-HT1A/5-HT₇ heterodimers, which promotes inhibition of presynaptic 5-HT1A receptors, an increase in serotonin levels, and the implementation of the antidepressant effect. Translated from [13].

Download (697KB)

Copyright (c) 2025 Russian Academy of Sciences