Synthesis of thin films of magnesium aluminate spinel by Al and Mg anodic evaporation

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The structure and properties of alumomagnesium spinel films synthesized by reactive anodic evaporation of Al and Mg from individual crucibles in a low–pressure arc (Ar/O2 mixture at 0.7–1.2 Pa) and vapor condensation on a substrate at 400–600°C were investigated. The current of a discharge with a self–heated hollow cathode was distributed between the anode (10–30 A) and crucibles with Mg (0.8–1.6 A) and Al (4–16 A), which provided an independent change in the deposition rate of films, plasma density, partial pressures of metal vapors and concentrations of elements in the films. A decrease in the rate of Mg oxidation and stabilization of the evaporation process were achieved by increasing the power density of the electron flux on the Mg inside the crucible and transition from the evaporation by sublimation to the evaporation from the liquid state by reducing the aperture of the Mg crucible. The high density of Mg vapor flow in a small aperture prevents oxygen from entering the crucible. The crystallization temperature of spinel under conditions of bombardment of the growing film by ions with an energy of 25–100 eV at a current density of 2 mA/cm2 was ~400°C. The films were characterized by scanning electron microscopy, X-ray phase analysis and microhardness measurements. Cubic spinel films had a strong texture (100) and a micro-distortion level of the crystal lattice of ~1%. The deposition rate of non-stoichiometric spinel films with a relative content of Al and Mg atoms adjustable within 1.2–2.4 was 1–3 µm/h.

Full Text

Restricted Access

About the authors

N. V. Gavrilov

Institute of Electrophysics of the Ural Branch of the Russian Academy of Sciences; Ural Federal University named after the first President of Russia B.N. Yeltsin

Author for correspondence.
Email: gavrilov@iep.uran.ru
Russian Federation, Yekaterinburg; Yekaterinburg

D. R. Emlin

Institute of Electrophysics of the Ural Branch of the Russian Academy of Sciences

Email: erd@iep.uran.ru
Russian Federation, Yekaterinburg

А. I. Medvedev

Ural Federal University named after the first President of Russia B.N. Yeltsin

Email: gavrilov@iep.uran.ru
Russian Federation, Yekaterinburg

P. А. Skorynina

Institute of Engineering Science of the Ural Branch of the Russian Academy of Sciences

Email: gavrilov@iep.uran.ru
Russian Federation, Yekaterinburg

References

  1. Гаврилов Н.В., Каменецких А.С., Емлин Д.Р., Третников П.В., Чукин А.В. // Журнал технической физики. 2019. Т. 89. № 6. С. 867. https://www.doi.org/10.21883/JTF.2019.06.47632.214-18
  2. Каменецких А.С., Гаврилов Н.В., Третников П.В., Чукин А.В., Меньшаков А.И., Чолах С.О. // Известия Вузов. Физика. 2020. Т. 63. № 10. С. 144. https://www.doi.org/10.17223/00213411/63/10/144
  3. Ahmad S.M., Hussain T., Ahmad R., Siddiqui J., Ali D. // Mater. Res. Express. 2018. № 5. P. 016415. https://www.doi.org/10.1088/2053-1591/aaa828
  4. Ganesh I. // Int. Mater. Rev. 2013. V. 58. № 2. P. 63. https://www.doi.org/10.1179/1743280412Y.0000000001
  5. Zhang J., Stauf G.T., Gardiner R., Buskirk P.V., Steinbeck J. // J. Mater. Res. 1994. V. 9. № 6. P. 1333. https://www.doi.org/10.1557/JMR.1994.1333
  6. Putkonen M., Nieminen M., Niinisto L. // Thin Solid Films. 2004. V. 466. P. 103. https://www.doi.org/10.1016/j.tsf.2004.02.078
  7. Станчик А.В., Гременок В.Ф., Труханова Е.Л., Хорошко В.В., Сулейманов С.Х., Дыскин В.Г., Джанклич М.У., Кулагина Н.А., Амиров Ш.Е. // Computational Nanotechnology. 2022. V. 9. № 1. P. 125. https://www.doi.org/10.33693/2313-223X-2022-9-1-125-131
  8. Wang Y., Xie X., Zhu C. // ACS Omega. 2022. V. 7. P. 12617. https://www.doi.org/10.1021/acsomega.1c06583
  9. Saraiva M., Georgieva V., Mahieu S., van Aeken K., Bogaerts A., Depla D. // J. Appl. Phys. 2010. № 7. Р. 034902. https://www.doi.org/10.1063/1.3284949
  10. Honig R.E. // RCA Rev. 1957. V. 18. P. 195.
  11. Depla D., Mahieu S. Reactive sputter deposition. Springer Series in Materials Science. Berlin Heidelberg: Springer-Verlag, 2008. 584 р. https://www.doi.org/10.1007/978-3-540-76664-3
  12. Гаврилов Н.В., Каменецких А.С., Паранин С.Н., Спирин А.В., Чукин А.В. // Приборы и техника эксперимента. 2017. № 5. C. 136. https://www.doi.org/10.7868/S0032816217040152
  13. Eriksson K.B.S., Isberg H.B.S. // Ark. Fys. 1963. V. 23. Iss. 47. P. 527.
  14. Meißner K.W. // Ann. Phys. 1938. V. 423. P. 505.
  15. Зимон А.Д. Адгезия пленок и покрытий. Москва: Химия, 1977. 352 с.
  16. TOPAS V. 3.0 (2005) Brucker AXS GmbH, Karlsruhe. www. bruker-axs.de
  17. Domanski D., Urretavizcaya G., Castro F.J., Gennari F.C. // J. Am. Ceram. Soc. 2004. V. 87. № 11. P. 2020. https://www.doi.org/10.1111/j.1151-2916.2004.tb06354.x
  18. Georgieva V., Saraiva M., Jehanathan N., Lebelev O.I., Depla D., Bogaerts A. // J. Phys. D: Appl. Phys. 2009. V. 42. P. 065107. https://www.doi.org/10.1088/0022-3727/42/6/065107
  19. Henkelman G., Uberuaga B.P., Harris D.J., Harding J.H., Allan N.L. // Phys. Rev. B: Condens. Matter. 2005. V. 72. P. 115437. https://www.doi.org/10.1103/PhysRev B.72.115437
  20. Yusupov M., Saraiva M., Depla D., Bogaerts A. // New J. Phys. 2012. V. 14. P. 073043. https://www.doi.org/10.1088/1367-2630/14/7/073043.
  21. Dash S., Sahoo R.K., Das A., Bajpai S., Debasish D., Saroj K.S. // J. Alloys Compd. 2017. V. 726. P. 1186. https://www.doi.org/10.1016/j.jallcom.2017.08.085
  22. Shou-Yong J., Li-Bin L., Ning-Kang H., Jin Z., Yong L. // J. Mater. Sci. Lett. 2000. V. 19. P. 225. https://www.doi.org/10.1023/A:1006710808718
  23. Шеховцов В.В., Скрипникова Н.К., Улмасов А.Б. // Вестник ТГАСУ. 2022. Т. 24. № 3. C. 138. https://www.doi.org/10.31675/1607-1859-2022-24-3-138-146
  24. Murphy S.T., Gilbert C.A., Smith R., Mitchell T.E., Grimes R.W. // Philosophical Magazine. 2010. V. 90. № 10. Р. 1297. https://www.doi.org/10.1080/14786430903341402

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Schematic diagram of the coating deposition device: 1 — self-heating TiN cathode; 2 — graphite rod anode; 3, 4 — graphite crucibles with Mg and Al, respectively; 5 — screen; 6 — sample holder; 7 — heater; 8 — damper; 9 — vacuum chamber.

Download (26KB)
3. Fig. 2. Spectrum of optical radiation of discharge plasma at anode current of 35 A, on Mg crucibles — 0.5 A and Al — 7 A; gas mixture pressure Ar:O2 = 1.2 Pa and partial oxygen pressure PO2 = 0.4 Pa.

Download (10KB)
4. Fig. 3. Magnesium oxide framework formed after evaporation of a cubic Mg granule in an open crucible in an Ar/O2 environment (a), and the remainder of the Mg granule after evaporation in a closed crucible with an aperture diameter of 2.3–3.5 mm (b).

Download (36KB)
5. Fig. 4. Diffraction pattern of a film containing AMS (Sp) and magnesium oxide (MgO) on a 12Kh18N10T steel substrate (α-Fe, γ-Fe). Deposition process parameters: jb = 3 mA/cm2, еUb = 100 eV, T ~ 400°C. P = 1.2 Pa, PO2 = 0.15 Pa.

Download (14KB)
6. Fig. 5. Diffraction pattern of an AMS film with excess Al on a 12Kh18N10T steel substrate. Deposition process parameters: jb = 2.5 mA/cm2, еUb = 100 eV. T = 380°C. P = 1.2 Pa, PO2 = 0.2 Pa.

Download (16KB)
7. Fig. 6. X-ray diffraction patterns of the AMS films on a Si substrate: a — 400 reflections obtained in the θ–2θ scanning mode using CuKα1,2 radiation (λ = 0.1542 nm) from samples with different elemental compositions Al:Mg = 1.2 (1), 1.8 (2), 2.4 (3); b — diffraction pattern of sample 2 obtained in the grazing incidence mode at an angle of 5° to the surface using СоKα radiation (λ = 0.179 nm).

Download (25KB)
8. Fig. 7. Surface (a) and cross-section (b) images of the AMS thin film. Deposition process parameters: T = 400°C, eU = 25 eV, jb ~ 0.7 mA/cm2, P = 1.2 Pa, PO2 = 0.58 Pa. Elemental composition O:Mg:Al = 51.2:18.9:30.25 (in at. %).

Download (22KB)

Copyright (c) 2024 Russian Academy of Sciences