Temperature dependence of structural parameters of thin films of polystyrene—fullerene С6070 nanocomposite according to neutron reflectometry data

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

The temperature dependences of the structural parameters of thin films of polystyrene–fullerene C60/C70 nanocomposites with a low content of nanoparticles in the vicinity of the glass transition temperature of the polymer matrix were studied by specular neutron reflectometry in the range 15–150°C. The obtained temperature dependences of film thickness were used to estimate the glass transition temperature of film composites. In the case of films with C60 fullerene, the dependence had a standard form. The glass transition temperature of the composite film was found to decrease compared to the known value for the pure bulk polymer. In the case of films with C70 fullerene, upon transition to high temperatures, a non-monotonic dependence of the film thickness was observed, which hindered the application of the general approach.

Texto integral

Acesso é fechado

Sobre autores

T. Tropin

Joint Institute for Nuclear Research

Email: avd@nf.jinr.ru

Frank Laboratory of Neutron Physics

Rússia, Dubna

M. Avdeev

Joint Institute for Nuclear Research

Email: avd@nf.jinr.ru

Frank Laboratory of Neutron Physics

Rússia, Dubna

V. Aksenov

Joint Institute for Nuclear Research

Autor responsável pela correspondência
Email: avd@nf.jinr.ru

Frank Laboratory of Neutron Physics

Rússia, Dubna

Bibliografia

  1. Anandhan S., Bandyopadhyay S. // Nanocomposites Polymers with Analytical Methods / Ed. Cuppoletti J. Rijeka: IntechOpen, 2011. Р. 3. https://doi.org/10.5772/17039
  2. Barnes K.A., Karim A., Douglas J.F., Nakatani A.I., Gruell H., Amis E.J. // Macromolecules. 2000. V. 33. P. 4177. https://doi.org/10.1021/ma990614s
  3. Wang C., Guo Z.X., Fu S., Wu W., Zhu D. // Prog. Polym. Sci. 2004. V. 29. P. 1079.
  4. Russell T.P., Chai Y. // Macromolecules. 2017. V. 50. P. 4597. https://doi.org/10.1016/j.progpolymsci.2004.08.001
  5. Krishnan R.S., Mackay M.E., Duxbury P.M., Hawker C.J., Asokan S., Wong M.S., Goyette R., Thiyagarajan P. // J. Phys. Condens. Matter. 2007. V. 19. Р. 356003. https://doi.org/10.1088/0953-8984/19/35/356003
  6. Mackay M.E., Tuteja A., Duxbury P.M., Hawker C.J., Van Horn B., Guan Z., Chen G., Krishnan R.S. // Science. 2006. V. 311. P. 1740. https://doi.org/10.1126/science.1122225
  7. Holmes M.A., Mackay M.E., Giunta R.K. // J. Nanoparticle Res. 2007. V. 9. P. 753. https://doi.org/10.1007/s11051-006-9118-1
  8. Karpets M.L., Tropin T.V., Bulavin L.A., Schmelzer J.W.P. // Nucl. Phys. At. En. 2018. V. 19. P. 376.
  9. Tropin T.V., Karpets M.L., Kosiachkin Y., Aksenov V.L. // J. Surf. Invest.: X-Ray Synchrotron Neutron Tech. 2021. V. 15. P. 768. https://doi.org/10.1134/S1027451021040224
  10. Tropin T.V., Karpets M.L., Kosiachkin Y. et al. // Fullerenes, Nanotub. Carbon Nanostructures. 2021. V. 29. P. 819. https://doi.org/10.1080/1536383X.2021.1901276
  11. Yaklin M.A., Duxbury P.M., Mackay M.E. // Soft Matter. 2008. V. 4. P. 2441. https://doi.org/10.1039/B807565D
  12. Авдеев М.В., Боднарчук В.И., Петренко В.И., Гапон И.В., Томчук А.В., Нагорный А.В., Ульянов В.А., Булавин Л.А., Аксенов В.Л. // Кристаллография. 2017. Т. 62. С. 1014. https://doi.org/10.7868/S0023476117060029
  13. Nelson A. // J. Appl. Crystallogr. 2006. V. 39. P. 273. https://doi.org/10.1107/S0021889806005073
  14. Kim J.H., Jang K.L., Ahn K., Yoon T, Lee T.-I., Kim T.-S. // Sci. Rep. 2019. V. 9. P. 1. https://doi.org/10.1038/s41598-019-43592-x
  15. Keddie J.L., Jones R.A.L., Cory R.A. // Europhys. Lett. 1994. V. 27. P. 59. https://doi.org/10.1209/0295-5075/27/1/011
  16. Forrest J.A., Dalnoki-Veress K., Stevens J.R., Dutcher J.R. // Phys. Rev. Lett. 1996. V. 77. P. 2002. https://doi.org/10.1103/PhysRevLett.77.2002
  17. Sanz A., Wong H.C., Nedoma J.A., Douglas J.F., Cabral J.T. // Polymer. 2015. V. 68. P. 47. https://doi.org/10.1016/j.polymer.2015.05.001
  18. Kropka J.M., Sakal V.G., Green P.F. // Nano Lett. 2008. V. 8. P. 1061. https://doi.org/10.1021/nl072980s
  19. Wong H.C., Cabral J.T. // J. Phys.: Conf. Ser. 2010. V. 247. P. 12046. https://doi.org/10.1088/1742-6596/247/1/012046

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Specular reflection curves for a thin film of the polymer nanocomposite dPS/C60 (fullerene content 0.3 wt.%) at temperatures: 1 – 30; 2 – 65; 3 – 90; 4 – 110; 5 – 130°C. Symbols are experimental points; solid lines are approximations within the single-layer model. For ease of perception, the curves are spaced along the ordinate axis.

Baixar (23KB)
3. Fig. 2. Temperature dependences of the thickness (a) and reduced thickness (b) of the dPS/C60 film with a fullerene content of 0.3 wt. % (a) and different fullerene contents x at different initial film thicknesses h0 (T = 45°C), obtained based on specular reflection neutron reflectometry data: x = 0.3%, h0 = 130 nm (squares); x = 0.1%, h0 = 54 nm (circles); x = 0.15%, h0 = 114 nm (asterisks). Dashed lines — temperature dependences corresponding to the coefficients of volume expansion αp of polystyrene (a) and nanocomposites (b) [14, 15].

Baixar (22KB)
4. Fig. 3. Specular reflection curves for a thin film of the polymer nanocomposite polystyrene-fullerene C70 (fullerene content 1 wt.%) on a silicon substrate at temperatures: 1 – 40; 2 – 90; 3 – 150°C. Symbols are experimental points, lines are approximations within the single-layer (dashed line) and three-layer (solid line) models. For ease of perception, the curves are spaced along the ordinate axis.

Baixar (22KB)
5. Fig. 4. Temperature dependence of the thickness of a thin film of the PS/C70 nanocomposite (fullerene content 1 wt.%), obtained on the basis of neutron reflectometry data of specular reflection. Dashed lines are the corresponding temperature dependences of the coefficients of volume expansion of polystyrene before and after the glass transition [14, 15].

Baixar (11KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024