Preparation Optimization and Immunological Activity Studies of Portulaca oleracea L. Polysaccharides Liposomes


Cite item

Full Text

Abstract

Aims:This study combines traditional Chinese medicine polysaccharides with nanomaterials to enhance drug bioavailability and immunological activity.

Background:The study of polysaccharide preparation, structure identification, pharmacological activity, and mechanism of action is deepening, but the research combined with the new drug delivery system is relatively weak, so the application of polysaccharides is still facing great limitations. In order to prolong the action time of polysaccharides and improve their bioavailability, liposome has become the most promising delivery carrier.

Objectives:The purpose of this study was to optimize the preparation process of Portulaca oleracea L. polysaccharides liposomes (POL-PL) and evaluate the immunoactivity in vitro.

Methods:POL-PL was prepared by reverse evaporation, and the preparation process was optimized using the response surface methodology. The characteristic analysis of POL-PL was detected by the indicators including morphology, particle size, zeta potential, encapsulation efficiency, release, and stability. The effects of POL-PL on the proliferation and immunological activity of mouse spleen lymphocytes and RAW264.7 cells were evaluated in vitro.

Results:POL-PL is highly homogeneous in morphology and particle size, and its sustained release improves the bioavailability of Portulaca oleracea L. polysaccharides (POL-P). Moreover, POL-PL treatment significantly enhanced the proliferation and phagocytic activity of RAW264.7 cells and increased the secretion of IL-6, TNF-α, IL-1β, and NO.

Conclusion:This study suggested that POL-PL were prepared successfully by reverse evaporation method, and POL-PL had immunoenhancing activity in vitro. The results provided a theoretical basis for further application of POL-PL.

About the authors

Yan Li

College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University

Email: info@benthamscience.net

Guiyan Jia

College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University

Email: info@benthamscience.net

Tao Li

College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University

Email: info@benthamscience.net

Xiechen Zhou

College of Animal Science and Technology, Heilongjiang Bayi Agricultural University

Email: info@benthamscience.net

Hui Zhao

Centers for Disease Control and Prevention, Daqing City People’s Hospital

Email: info@benthamscience.net

Junyang Cao

College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University

Email: info@benthamscience.net

Zijan Guan

College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University

Email: info@benthamscience.net

Rui Zhao

College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University

Author for correspondence.
Email: info@benthamscience.net

References

  1. Ocampo G, Columbus JT. Molecular phylogenetics, historical biogeography, and chromosome number evolution of Portulaca (Portulacaceae). Mol Phylogenet Evol 2012; 63(1): 97-112. doi: 10.1016/j.ympev.2011.12.017 PMID: 22210411
  2. YouGuo C. ZongJi S, XiaoPing C. Evaluation of free radicals scavenging and immunity-modulatory activities of Purslane polysaccharides. Int J Biol Macromol 2009; 45(5): 448-52. doi: 10.1016/j.ijbiomac.2009.07.009 PMID: 19643128
  3. Shen H, Tang G, Zeng G, et al. Purification and characterization of an antitumor polysaccharide from Portulaca oleracea L. Carbohydr Polym 2013; 93(2): 395-400. doi: 10.1016/j.carbpol.2012.11.107 PMID: 23499074
  4. Guo G, Yue L, Fan S, Jing S, Yan LJ. Antioxidant and antiproliferative activities of purslane seed oil. J Hypertens 2016; 5(2): 218. doi: 10.4172/2167-1095.1000218 PMID: 27928516
  5. Zhao R, Gao X, Cai Y, et al. Antitumor activity of Portulaca oleracea L. polysaccharides against cervical carcinoma in vitro and in vivo. Carbohydr Polym 2013; 96(2): 376-83. doi: 10.1016/j.carbpol.2013.04.023 PMID: 23768576
  6. Zhao R, Meng X, Jia G, Yu Y, Song B. Oral pre-administration of Purslane polysaccharides enhance immune responses to inactivated foot-and-mouth disease vaccine in mice. BMC Vet Res 2019; 15(1): 38. doi: 10.1186/s12917-019-1782-3 PMID: 30683105
  7. Has C, Sunthar P. A comprehensive review on recent preparation techniques of liposomes. J Liposome Res 2020; 30(4): 336-65. doi: 10.1080/08982104.2019.1668010 PMID: 31558079
  8. Bangham AD, Standish MM, Watkins JC. Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol 1965; 13(1): 238-IN27. doi: 10.1016/S0022-2836(65)80093-6 PMID: 5859039
  9. Kramer RM, Archer MC, Orr MT, et al. Development of a thermostable nanoemulsion adjuvanted vaccine against tuberculosis using a design-of-experiments approach. Int J Nanomedicine 2018; 13: 3689-711. doi: 10.2147/IJN.S159839 PMID: 29983563
  10. Abdellatif AAH, Aldosari BN, Al-Subaiyel A, et al. Transethosomal gel for the topical delivery of celecoxib: Formulation and estimation of skin cancer progression. Pharmaceutics 2022; 15(1): 22. doi: 10.3390/pharmaceutics15010022 PMID: 36678651
  11. Wathoni N, Puluhulawa LE, Joni IM, et al. Monoclonal antibody as a targeting mediator for nanoparticle targeted delivery system for lung cancer. Drug Deliv 2022; 29(1): 2959-70. doi: 10.1080/10717544.2022.2120566 PMID: 36085575
  12. Tandrup Schmidt S, Foged C, Smith Korsholm K, Rades T, Christensen D. Liposome-based adjuvants for subunit vaccines: Formulation strategies for subunit antigens and immunostimulators. Pharmaceutics 2016; 8(1): 7. doi: 10.3390/pharmaceutics8010007 PMID: 26978390
  13. Zhang W, Ma W, Zhang J, Song X, Sun W, Fan Y. The immunoregulatory activities of astragalus polysaccharide liposome on macrophages and dendritic cells. Int J Biol Macromol 2017; 105(Pt 1): 852-61. doi: 10.1016/j.ijbiomac.2017.07.108 PMID: 28732726
  14. Chen F, Wu W, Millman A, et al. Neutrophils prime a long-lived effector macrophage phenotype that mediates accelerated helminth expulsion. Nat Immunol 2014; 15(10): 938-46. doi: 10.1038/ni.2984 PMID: 25173346
  15. Netea MG, Domínguez-Andrés J, Barreiro LB, et al. Defining trained immunity and its role in health and disease. Nat Rev Immunol 2020; 20(6): 375-88. doi: 10.1038/s41577-020-0285-6 PMID: 32132681
  16. Liu C, Chen J, Chen L, Huang X, Cheung PCK. Immunomodulatory activity of polysaccharide–protein complex from the mushroom sclerotia of Polyporus rhinocerus in murine macrophages. J Agric Food Chem 2016; 64(16): 3206-14. doi: 10.1021/acs.jafc.6b00932 PMID: 27054263
  17. Senapati S, Mahanta AK, Kumar S, Maiti P. Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduct Target Ther 2018; 3(1): 7. doi: 10.1038/s41392-017-0004-3 PMID: 29560283
  18. Lee MK. Liposomes for enhanced bioavailability of water-insoluble drugs: in vivo evidence and recent approaches. Pharmaceutics 2020; 12(3): 264. doi: 10.3390/pharmaceutics12030264 PMID: 32183185
  19. Gong H, Li W, Sun J, et al. A review on plant polysaccharide based on drug delivery system for construction and application, with emphasis on traditional Chinese medicine polysaccharide. Int J Biol Macromol 2022; 211: 711-28. doi: 10.1016/j.ijbiomac.2022.05.087 PMID: 35588976
  20. Moslehi M, Mortazavi SAR, Azadi A, Fateh S, Hamidi M, Foroutan SM. Preparation, optimization and characterization of chitosan-coated liposomes for solubility enhancement of furosemide: A model BCS IV drug. Iran J Pharm Res 2020; 19(1): 366-82. doi: 10.22037/ijpr.2019.111834.13384 PMID: 32922494
  21. Günther J, Seyfert HM. The first line of defence: Insights into mechanisms and relevance of phagocytosis in epithelial cells. Semin Immunopathol 2018; 40(6): 555-65. doi: 10.1007/s00281-018-0701-1 PMID: 30182191
  22. Mu H, Holm R. Solid lipid nanocarriers in drug delivery: Characterization and design. Expert Opin Drug Deliv 2018; 15(8): 771-85. doi: 10.1080/17425247.2018.1504018 PMID: 30064267
  23. Desai MP, Labhasetwar V, Amidon GL, Levy RJ. Gastrointestinal uptake of biodegradable microparticles: Effect of particle size. Pharm Res 1996; 13(12): 1838-45. doi: 10.1023/A:1016085108889 PMID: 8987081
  24. Smith MC, Crist RM, Clogston JD, McNeil SE. Zeta potential: A case study of cationic, anionic, and neutral liposomes. Anal Bioanal Chem 2017; 409(24): 5779-87. doi: 10.1007/s00216-017-0527-z PMID: 28762066
  25. Mohd Izham MN, Hussin Y, Aziz MNM, et al. Preparation and characterization of self nano-emulsifying drug delivery system loaded with citraland its antiproliferative effect on colorectal cells in vitro. Nanomaterials 2019; 9(7): 1028. doi: 10.3390/nano9071028 PMID: 31323842
  26. Ke M, Wang H, Zhou Y, et al. SEP enhanced the antitumor activity of 5-fluorouracil by up-regulating NKG2D/MICA and reversed immune suppression via inhibiting ROS and caspase-3 in mice. Oncotarget 2016; 7(31): 49509-26. doi: 10.18632/oncotarget.10375 PMID: 27385218
  27. Zhou BY, Sun JC, Li X, et al. Analysis of immune responses in mice orally immunized with recombinant pMG36e-SP-TSOL18/Lactococcus lactis and pMG36e-TSOL18/Lactococcus lactis vaccines of Taenia solium. J Immunol Res 2018; 2018: 1-12. doi: 10.1155/2018/9262631
  28. Chen Y, Wu Y, Xian L, et al. Effects of bush sophora root polysaccharide and its sulfate on immuno-enhancing of the therapeutic DVH. Int J Biol Macromol 2015; 80: 217-24. doi: 10.1016/j.ijbiomac.2015.06.029 PMID: 26118485
  29. Lee YJ, Lee SB, Beak SK, et al. Temporal changes in immune cell composition and cytokines in response to chemoradiation in rectal cancer. Sci Rep 2018; 8(1): 7565. doi: 10.1038/s41598-018-25970-z PMID: 29765096
  30. Maeda N, Sekigawa I, Iida N, Matsumoto M, Hashimoto H, Hirose S. Relationship between CD4+/CD8+ T cell ratio and T cell activation in systemic lupus erythematosus. Scand J Rheumatol 1999; 28(3): 166-70. doi: 10.1080/03009749950154248 PMID: 10380839
  31. Hussain T, Kulshreshtha KK, Yadav VS, Katoch K. CD4+, CD8+, CD3+ cell counts and CD4+/CD8+ ratio among patients with mycobacterial diseases (leprosy, tuberculosis), HIV infections, and normal healthy adults: A comparative analysis of studies in different regions of India. J Immunoassay Immunochem 2015; 36(4): 420-43. doi: 10.1080/15321819.2014.978082 PMID: 25350657
  32. Seregin SS, Amalfitano A. Improving adenovirus based gene transfer: Strategies to accomplish immune evasion. Viruses 2010; 2(9): 2013-36.
  33. Chen C, Su X, Hu Z. Immune promotive effect of bioactive peptides may be mediated by regulating the expression of SOCS1/miR 155. Exp Ther Med 2019; 18(3): 1850-62. doi: 10.3892/etm.2019.7734 PMID: 31410147

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers