Differential Signaling Pathways in Medulloblastoma: Nano-biomedicine Targeting Non-coding Epigenetics to Improve Current and Future Therapeutics


Цитировать

Полный текст

Аннотация

Background:Medulloblastomas (MDB) are malignant, aggressive brain tumors that primarily affect children. The survival rate for children under 14 is approximately 72%, while for ages 15 to 39, it is around 78%. A growing body of evidence suggests that dysregulation of signaling mechanisms and noncoding RNA epigenetics play a pivotal role in this disease

Methodology:This study conducted an electronic search of articles on websites like PubMed and Google. The current review also used an in silico databases search and bioinformatics analysis and an extensive comprehensive literature search for original research articles and review articles as well as retrieval of current and future medications in clinical trials.

Results:This study indicates that several signaling pathways, such as sonic hedgehog, WNT/β-catenin, unfolded protein response mediated ER stress, notch, neurotrophins and TGF-β and ERK, MAPK, and ERK play a crucial role in the pathogenesis of MDB. Gene and ncRNA/protein are also involved as an axis long ncRNA to sponge micro-RNAs that affect downstream signal proteins expression and translation affection disease pathophysiology, prognosis and present potential target hit for drug repurposing. Current treatment options include surgery, radiation, and chemotherapy; unfortunately, the disease often relapses, and the survival rate is less than 5%. Therefore, there is a need to develop more effective treatments to combat recurrence and improve survival rates.

Conclusion:This review describes various MDB disease hallmarks, including the signaling mechanisms involved in pathophysiology, related-causal genes, epigenetics, downstream genes/epigenes, and possibly the causal disease genes/non-protein coding (nc)RNA/protein axis. Additionally, the challenges associated with MDB treatment are discussed, along with how they are being addressed using nano-technology and nano-biomedicine, with a listing of possible treatment options and future potential treatment modalities.

Об авторах

Daniil Sokolov

Department of Pediatrics, University of Maryland School of Medicine

Email: info@benthamscience.net

Neha Sharda

Department of Pediatrics, University of Maryland School of Medicine

Email: info@benthamscience.net

Aindrila Banerjee

Department of Pediatrics, University of Maryland School of Medicine

Email: info@benthamscience.net

Kseniia Denisenko

Department of Pediatrics, University of Maryland School of Medicine

Email: info@benthamscience.net

Emad Basalious

Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy,, Cairo University,

Email: info@benthamscience.net

Hem Shukla

Division of Translational Radiation Sciences, Department of Radiation Oncology, University of Maryland, School of Medicine

Email: info@benthamscience.net

Jaylyn Waddell

Department of Pediatrics, University of Maryland School of Medicine

Email: info@benthamscience.net

Nadia Hamdy

Department of Biochemistry, Faculty of Pharmacy, Ain Shams University

Автор, ответственный за переписку.
Email: info@benthamscience.net

Aditi Banerjee

Department of Pediatrics, University of Maryland School of Medicine

Автор, ответственный за переписку.
Email: info@benthamscience.net

Список литературы

  1. Schakelaar MY, Monnikhof M, Crnko S, et al. Cellular immunotherapy for medulloblastoma. Neuro-oncol 2023; 25(4): 617-27. doi: 10.1093/neuonc/noac236 PMID: 36219688
  2. Johnson KJ, Cullen J, Barnholtz-Sloan JS, et al. Childhood brain tumor epidemiology: A brain tumor epidemiology consortium review. Cancer Epidemiol Biomarkers Prev 2014; 23(12): 2716-36. doi: 10.1158/1055-9965.EPI-14-0207 PMID: 25192704
  3. Millard NE, De Braganca KC. Medulloblastoma. J Child Neurol 2016; 31(12): 1341-53. doi: 10.1177/0883073815600866 PMID: 26336203
  4. Grausam KB, Dooyema SDR, Bihannic L, et al. ATOH1 promotes leptomeningeal dissemination and metastasis of sonic hedgehog subgroup medulloblastomas. Cancer Res 2017; 77(14): 3766-77. doi: 10.1158/0008-5472.CAN-16-1836 PMID: 28490517
  5. Liang KH, Chang CC, Wu KS, et al. Notch signaling and natural killer cell infiltration in tumor tissues underlie medulloblastoma prognosis. Sci Rep 2021; 11(1): 23282. doi: 10.1038/s41598-021-02651-y PMID: 34857809
  6. Eid AM, Heabah NAEG. Medulloblastoma: Clinicopathological parameters, risk stratification, and survival analysis of immunohistochemically validated molecular subgroups. J Egypt Natl Canc Inst 2021; 33(1): 6. doi: 10.1186/s43046-021-00060-w PMID: 33555447
  7. Northcott PA, Korshunov A, Witt H, et al. Medulloblastoma comprises four distinct molecular variants. J Clin Oncol 2011; 29(11): 1408-14. doi: 10.1200/JCO.2009.27.4324 PMID: 20823417
  8. Wang YX, Wu H, Ren Y, et al. Elevated Kir2.1/nuclear N2ICD defines a highly malignant subtype of non-WNT/SHH medulloblastomas. Signal Transduct Target Ther 2022; 7(1): 72. doi: 10.1038/s41392-022-00890-7 PMID: 35273141
  9. Funakoshi Y, Sugihara Y, Uneda A, Nakashima T, Suzuki H. Recent advances in the molecular understanding of medulloblastoma. Cancer Sci 2023; 114(3): 741-9. doi: 10.1111/cas.15691 PMID: 36520034
  10. Hager NA, McAtee CK, Lesko MA, O’Donnell AF. Inwardly rectifying potassium channel kir2.1 and its "kir-ious" regulation by protein trafficking and roles in development and disease. Front Cell Dev Biol 2022; 9: 796136. doi: 10.3389/fcell.2021.796136 PMID: 35223865
  11. Guessous F, Li Y, Abounader R. Signaling pathways in medulloblastoma. J Cell Physiol 2008; 217(3): 577-83. doi: 10.1002/jcp.21542 PMID: 18651559
  12. Banerjee A, Ahmed H, Yang P, Czinn SJ, Blanchard TG. Endoplasmic reticulum stress and IRE-1 signaling cause apoptosis in colon cancer cells in response to andrographolide treatment. Oncotarget 2016; 7(27): 41432-4. doi: 10.18632/oncotarget.9180 PMID: 27166181
  13. Blanchard TG, Czinn SJ, Banerjee V, et al. Identification of cross talk between FoxM1 and RASSF1A as a therapeutic target of colon cancer. Cancers 2019; 11(2): 199. doi: 10.3390/cancers11020199 PMID: 30744076
  14. Blanchard TG, Lapidus R, Banerjee V, et al. Upregulation of RASSF1A in colon cancer by suppression of angiogenesis signaling and Akt activation. Cell Physiol Biochem 2018; 48(3): 1259-73. doi: 10.1159/000492012 PMID: 30045022
  15. Jiang J. Hedgehog signaling mechanism and role in cancer. Semin Cancer Biol 2022; 85: 107-22. doi: 10.1016/j.semcancer.2021.04.003 PMID: 33836254
  16. Sokolov D, Sharda N, Giri B, et al. Melatonin and andrographolide synergize to inhibit the colospheroid phenotype by targeting Wnt/beta‐catenin signaling. J Pineal Res 2022; 73(1): e12808. doi: 10.1111/jpi.12808 PMID: 35619550
  17. Xiong S, Chng WJ, Zhou J. Crosstalk between endoplasmic reticulum stress and oxidative stress: A dynamic duo in multiple myeloma. Cell Mol Life Sci 2021; 78(8): 3883-906. doi: 10.1007/s00018-021-03756-3 PMID: 33599798
  18. Ingham PW, Placzek M. Orchestrating ontogenesis: Variations on a theme by sonic hedgehog. Nat Rev Genet 2006; 7(11): 841-50. doi: 10.1038/nrg1969 PMID: 17047684
  19. di Magliano MP, Hebrok M. Hedgehog signalling in cancer formation and maintenance. Nat Rev Cancer 2003; 3(12): 903-11. doi: 10.1038/nrc1229 PMID: 14737121
  20. Wijaya J, Vo BT, Liu J, et al. An ABC transporter drives medulloblastoma pathogenesis by regulating sonic hedgehog signaling. Cancer Res 2020; 80(7): 1524-37. doi: 10.1158/0008-5472.CAN-19-2054 PMID: 31948942
  21. Dobson THW, Tao RH, Swaminathan J, et al. Transcriptional repressor REST drives lineage stage-specific chromatin compaction at Ptch1 and increases AKT activation in a mouse model of medulloblastoma. Sci Signal 2019; 12(565): eaan8680. doi: 10.1126/scisignal.aan8680 PMID: 30670636
  22. Ho Y, Li X, Jamison S, et al. PERK activation promotes medulloblastoma tumorigenesis by attenuating premalignant granule cell precursor apoptosis. Am J Pathol 2016; 186(7): 1939-51. doi: 10.1016/j.ajpath.2016.03.004 PMID: 27181404
  23. da Silva LS, Mançano BM, de Paula FE, et al. Expression of GNAS, TP53, and PTEN improves the patient prognostication in Sonic Hedgehog (SHH) medulloblastoma subgroup. J Mol Diagn 2020; 22(7): 957-66. doi: 10.1016/j.jmoldx.2020.04.207 PMID: 32380172
  24. Duarte TT, Teixeira SA, Gonzalez-Reyes L, Reis RM. Decoding the roles of astrocytes and hedgehog signaling in medulloblastoma. Curr Oncol 2021; 28(4): 3058-70. doi: 10.3390/curroncol28040267 PMID: 34436033
  25. Hartmann W, Digon-Söntgerath B, Koch A, et al. Phosphatidylinositol 3′-kinase/AKT signaling is activated in medulloblastoma cell proliferation and is associated with reduced expression of PTEN. Clin Cancer Res 2006; 12(10): 3019-27. doi: 10.1158/1078-0432.CCR-05-2187 PMID: 16707597
  26. Sun J, Li S, Wang F, Fan C, Wang J. Identification of key pathways and genes in PTEN mutation prostate cancer by bioinformatics analysis. BMC Med Genet 2019; 20(1): 191. doi: 10.1186/s12881-019-0923-7 PMID: 31791268
  27. Li W, Zhang T, Guo L, Huang L. Regulation of PTEN expression by noncoding RNAs. J Exp Clin Cancer Res 2018; 37(1): 223. doi: 10.1186/s13046-018-0898-9 PMID: 30217221
  28. Garcia-Lopez J, Kumar R, Smith KS, Northcott PA. Deconstructing sonic hedgehog medulloblastoma: Molecular subtypes, drivers, and beyond. Trends Genet 2021; 37(3): 235-50. doi: 10.1016/j.tig.2020.11.001 PMID: 33272592
  29. Yu Z, Zhang C, Chai R, et al. Prognostic significance and molecular mechanism of ATP-binding cassette subfamily C member 4 in resistance to neoadjuvant radiotherapy of locally advanced rectal carcinoma. PLoS One 2014; 9(1): e85446. doi: 10.1371/journal.pone.0085446 PMID: 24454870
  30. Ma P, An T, Zhu L, et al. RNF220 is required for cerebellum development and regulates medulloblastoma progression through epigenetic modulation of Shh signaling. Development 2020; 147(21): dev.188078. doi: 10.1242/dev.188078 PMID: 32376680
  31. Gong Y, Chen Y. UbE3-APA: A bioinformatic strategy to elucidate ubiquitin E3 ligase activities in quantitative proteomics study. Bioinformatics 2022; 38(8): 2211-8. doi: 10.1093/bioinformatics/btac069 PMID: 35139152
  32. Yang Q, Zhao J, Chen D, Wang Y. E3 ubiquitin ligases: Styles, structures and functions. Mol Biomed 2021; 2(1): 23. doi: 10.1186/s43556-021-00043-2 PMID: 35006464
  33. Li Y, Yang C, Wang H, et al. Sequential stabilization of RNF220 by RLIM and ZC4H2 during cerebellum development and Shh-group medulloblastoma progression. J Mol Cell Biol 2022; 14(1): mjab082. doi: 10.1093/jmcb/mjab082 PMID: 35040952
  34. Raleigh DR, Choksi PK, Krup AL, Mayer W, Santos N, Reiter JF. Hedgehog signaling drives medulloblastoma growth via CDK6. J Clin Invest 2017; 128(1): 120-4. doi: 10.1172/JCI92710 PMID: 29202464
  35. Daggubati V, Hochstelter J, Bommireddy A, et al. Smoothened-activating lipids drive resistance to CDK4/6 inhibition in Hedgehog-associated medulloblastoma cells and preclinical models. J Clin Invest 2021; 131(6): e141171. doi: 10.1172/JCI141171 PMID: 33476305
  36. Lospinoso Severini L, Ghirga F, Bufalieri F, Quaglio D, Infante P, Di Marcotullio L. The SHH/GLI signaling pathway: A therapeutic target for medulloblastoma. Expert Opin Ther Targets 2020; 24(11): 1159-81. doi: 10.1080/14728222.2020.1823967 PMID: 32990091
  37. Yang C, Qi Y, Sun Z. The role of sonic hedgehog pathway in the development of the central nervous system and aging-related neurodegenerative diseases. Front Mol Biosci 2021; 8: 711710. doi: 10.3389/fmolb.2021.711710 PMID: 34307464
  38. Amoretti M, Amsler C, Bonomi G, et al. Production and detection of cold antihydrogen atoms. Nature 2002; 419(6906): 456-9. doi: 10.1038/nature01096 PMID: 12368849
  39. Abd El Fattah YK, Abulsoud AI, AbdelHamid SG, Hamdy NM. Interactome battling of lncRNA CCDC144NL-AS1: Its role in the emergence and ferocity of cancer and beyond. Int J Biol Macromol 2022; 222(Pt B): 1676-87. doi: 10.1016/j.ijbiomac.2022.09.209
  40. El-Sheikh NM, Abulsoud AI, Wasfey EF, Hamdy NM. Insights on the potential oncogenic impact of long non-coding RNA nicotinamide nucleotide transhydrogenase antisense RNA 1 in different cancer types; Integrating pathway(s) and clinical outcome(s) association. Pathol Res Pract 2022; 240: 154183. doi: 10.1016/j.prp.2022.154183 PMID: 36327824
  41. Lee SE, Lim SD, Kang SY, Suh SB, Suh YL. Prognostic significance of Ror2 and Wnt5a expression in medulloblastoma. Brain Pathol 2013; 23(4): 445-53. doi: 10.1111/bpa.12017 PMID: 23278988
  42. Juraschka K, Taylor MD. Medulloblastoma in the age of molecular subgroups: A review. J Neurosurg Pediatr 2019; 24(4): 353-63. doi: 10.3171/2019.5.PEDS18381 PMID: 31574483
  43. Anne SL, Govek EE, Ayrault O, et al. WNT3 inhibits cerebellar granule neuron progenitor proliferation and medulloblastoma formation via MAPK activation. PLoS One 2013; 8(11): e81769. doi: 10.1371/journal.pone.0081769 PMID: 24303070
  44. Pöschl J, Bartels M, Ohli J, et al. Wnt/β-catenin signaling inhibits the Shh pathway and impairs tumor growth in Shh-dependent medulloblastoma. Acta Neuropathol 2014; 127(4): 605-7. doi: 10.1007/s00401-014-1258-2 PMID: 24531885
  45. Northcott PA, Buchhalter I, Morrissy AS, et al. The whole-genome landscape of medulloblastoma subtypes. Nature 2017; 547(7663): 311-7. doi: 10.1038/nature22973 PMID: 28726821
  46. Zinke J, Schneider FT, Harter PN, et al. β-Catenin-Gli1 interaction regulates proliferation and tumor growth in medulloblastoma. Mol Cancer 2015; 14(1): 17. doi: 10.1186/s12943-015-0294-4 PMID: 25645196
  47. Youn YH, Hou S, Wu CC, et al. Primary cilia control translation and the cell cycle in medulloblastoma. Genes Dev 2022; 36(11-12): 737-51. doi: 10.1101/gad.349596.122 PMID: 35798383
  48. Khoonkari M, Liang D, Lima MT, et al. The unfolded protein response sensor perk mediates stiffness-dependent adaptation in glioblastoma cells. Int J Mol Sci 2022; 23(12): 6520. doi: 10.3390/ijms23126520 PMID: 35742966
  49. Le Reste PJ, Avril T, Quillien V, Morandi X, Chevet E. Signaling the unfolded protein response in primary brain cancers. Brain Res 2016; 1642: 59-69. doi: 10.1016/j.brainres.2016.03.015 PMID: 27016056
  50. Peñaranda-Fajardo NM, Meijer C, Liang Y, et al. ER stress and UPR activation in glioblastoma: identification of a noncanonical PERK mechanism regulating GBM stem cells through SOX2 modulation. Cell Death Dis 2019; 10(10): 690. doi: 10.1038/s41419-019-1934-1 PMID: 31534165
  51. Lin W, Lin Y, Li J, Harding HP, Ron D, Jamison S. A deregulated integrated stress response promotes interferon-γ-induced medulloblastoma. J Neurosci Res 2011; 89(10): 1586-95. doi: 10.1002/jnr.22693 PMID: 21688289
  52. Jamison S, Lin Y, Lin W. Pancreatic endoplasmic reticulum kinase activation promotes medulloblastoma cell migration and invasion through induction of vascular endothelial growth factor A. PLoS One 2015; 10(3): e0120252. doi: 10.1371/journal.pone.0120252 PMID: 25794107
  53. Eldeeb M, Sanad EF, Ragab A, et al. Anticancer effects with molecular docking confirmation of newly synthesized isatin sulfonamide molecular hybrid derivatives against hepatic cancer cell lines. Biomedicines 2022; 10(3): 722. doi: 10.3390/biomedicines10030722 PMID: 35327524
  54. Macaluso M, Caracciolo V, Rizzo V, et al. Integrating role of T antigen, Rb2/p130, CTCF and BORIS in mediating non-canonical endoplasmic reticulum-dependent death pathways triggered by chronic ER stress in mouse medulloblastoma. Cell Cycle 2012; 11(9): 1841-50. doi: 10.4161/cc.20242 PMID: 22544282
  55. Flora A, Klisch TJ, Schuster G, Zoghbi HY. Deletion of Atoh1 disrupts sonic hedgehog signaling in the developing cerebellum and prevents medulloblastoma. Science 2009; 326(5958): 1424-7. doi: 10.1126/science.1181453 PMID: 19965762
  56. Zhao H, Ayrault O, Zindy F, Kim JH, Roussel MF. Post-transcriptional down-regulation of Atoh1/Math1 by bone morphogenic proteins suppresses medulloblastoma development. Genes Dev 2008; 22(6): 722-7. doi: 10.1101/gad.1636408 PMID: 18347090
  57. Julian E, Dave RK, Robson JP, Hallahan AR, Wainwright BJ. Canonical notch signaling is not required for the growth of Hedgehog pathway-induced medulloblastoma. Oncogene 2010; 29(24): 3465-76. doi: 10.1038/onc.2010.101 PMID: 20418906
  58. Julian E, Hallahan AR, Wainwright BJ. RBP-J is not required for granule neuron progenitor development and medulloblastoma initiated by Hedgehog pathway activation in the external germinal layer. Neural Dev 2010; 5(1): 27. doi: 10.1186/1749-8104-5-27 PMID: 20950430
  59. Emam O, Wasfey EF, Hamdy NM. Notch-associated lncRNAs profiling circuiting epigenetic modification in colorectal cancer. Cancer Cell Int 2022; 22(1): 316. doi: 10.1186/s12935-022-02736-2 PMID: 36229883
  60. Ballabio C, Gianesello M, Lago C, et al. Notch1 switches progenitor competence in inducing medulloblastoma. Sci Adv 2021; 7(26): eabd2781. doi: 10.1126/sciadv.abd2781 PMID: 34162555
  61. Thomaz A, Jaeger M, Brunetto AL, et al. Neurotrophin signaling in medulloblastoma. Cancers 2020; 12(9): 2542. doi: 10.3390/cancers12092542 PMID: 32906676
  62. Manoranjan B, Wang X, Hallett RM, et al. FoxG1 interacts with Bmi1 to regulate self-renewal and tumorigenicity of medulloblastoma stem cells. Stem Cells 2013; 31(7): 1266-77. doi: 10.1002/stem.1401 PMID: 23592496
  63. Liang L, Coudière-Morrison L, Tatari N, et al. CD271+ cells are diagnostic and prognostic and exhibit elevated MAPK activity in SHH medulloblastoma. Cancer Res 2018; 78(16): 4745-59. doi: 10.1158/0008-5472.CAN-18-0027 PMID: 29930101
  64. Aref D, Moffatt CJ, Agnihotri S, et al. Canonical TGF-β pathway activity is a predictor of SHH-driven medulloblastoma survival and delineates putative precursors in cerebellar development. Brain Pathol 2013; 23(2): 178-91. doi: 10.1111/j.1750-3639.2012.00631.x PMID: 22966790
  65. van Bree NFHN, Wilhelm M. The tumor microenvironment of medulloblastoma: An intricate multicellular network with therapeutic potential. Cancers 2022; 14(20): 5009. doi: 10.3390/cancers14205009 PMID: 36291792
  66. Santhana Kumar K, Neve A, Guerreiro Stucklin AS, et al. TGF-β determines the pro-migratory potential of bFGF signaling in medulloblastoma. Cell Rep 2018; 23(13): 3798-3812.e8. doi: 10.1016/j.celrep.2018.05.083 PMID: 29949765
  67. Liang Y, Diehn M, Bollen AW, Israel MA, Gupta N. Type I collagen is overexpressed in medulloblastoma as a component of tumor microenvironment. J Neurooncol 2008; 86(2): 133-41. doi: 10.1007/s11060-007-9457-5 PMID: 17653508
  68. Anwar MM, Albanese C, Hamdy NM, Sultan AS. Rise of the natural red pigment ‘prodigiosin’ as an immunomodulator in cancer. Cancer Cell Int 2022; 22(1): 419. doi: 10.1186/s12935-022-02815-4 PMID: 36577970
  69. da Cunha Jaeger M, Ghisleni EC, Cardoso PS, et al. HDAC and MAPK/ERK inhibitors cooperate to reduce viability and stemness in medulloblastoma. J Mol Neurosci 2020; 70(6): 981-92. doi: 10.1007/s12031-020-01505-y PMID: 32056089
  70. Antonucci L, Di Magno L, D’Amico D, et al. Mitogen-activated kinase kinase kinase 1 inhibits hedgehog signaling and medulloblastoma growth through GLI1 phosphorylation. Int J Oncol 2019; 54(2): 505-14. PMID: 30483764
  71. Gao R, Zhang R, Zhang C, Zhao L, Zhang Y. Long noncoding RNA CCAT1 promotes cell proliferation and metastasis in human medulloblastoma via MAPK pathway. Tumori 2018; 104(1): 43-50. doi: 10.5301/tj.5000662 PMID: 28777430
  72. Silber J, Hashizume R, Felix T, et al. Expression of miR-124 inhibits growth of medulloblastoma cells. Neuro-oncol 2013; 15(1): 83-90. doi: 10.1093/neuonc/nos281 PMID: 23172372
  73. Li KKW, Pang JC, Ching AK, et al. miR-124 is frequently down-regulated in medulloblastoma and is a negative regulator of SLC16A1. Hum Pathol 2009; 40(9): 1234-43. doi: 10.1016/j.humpath.2009.02.003 PMID: 19427019
  74. Tenga A, Beard JA, Takwi A, Wang YM, Chen T. Regulation of nuclear receptor Nur77 by miR-124. PLoS One 2016; 11(2): e0148433. doi: 10.1371/journal.pone.0148433 PMID: 26840408
  75. Pierson J, Hostager B, Fan R, Vibhakar R. Regulation of cyclin dependent kinase 6 by microRNA 124 in medulloblastoma. J Neurooncol 2008; 90(1): 1-7. doi: 10.1007/s11060-008-9624-3 PMID: 18607543
  76. Ferretti E, De Smaele E, Miele E, et al. Concerted microRNA control of Hedgehog signalling in cerebellar neuronal progenitor and tumour cells. EMBO J 2008; 27(19): 2616-27. doi: 10.1038/emboj.2008.172 PMID: 18756266
  77. Lucon DR, Rocha CS, Craveiro RB, et al. Downregulation of 14q32 microRNAs in primary human desmoplastic medulloblastoma. Front Oncol 2013; 3: 254. doi: 10.3389/fonc.2013.00254 PMID: 24093088
  78. Hemmesi K, Squadrito ML, Mestdagh P, et al. miR-135a inhibits cancer stem cell-driven medulloblastoma development by directly repressing Arhgef6 expression. Stem Cells 2015; 33(5): 1377-89. doi: 10.1002/stem.1958 PMID: 25639612
  79. Lv SQ, Kim YH, Giulio F, et al. Genetic alterations in microRNAs in medulloblastomas. Brain Pathol 2012; 22(2): 230-9. doi: 10.1111/j.1750-3639.2011.00523.x PMID: 21793975
  80. Murphy BL, Obad S, Bihannic L, et al. Silencing of the miR-17~92 cluster family inhibits medulloblastoma progression. Cancer Res 2013; 73(23): 7068-78. doi: 10.1158/0008-5472.CAN-13-0927 PMID: 24145352
  81. Zindy F, Kawauchi D, Lee Y, et al. Role of the miR-17∼92 cluster family in cerebellar and medulloblastoma development. Biol Open 2014; 3(7): 597-605. doi: 10.1242/bio.20146734 PMID: 24928431
  82. Weeraratne SD, Amani V, Teider N, et al. Pleiotropic effects of miR-183~96~182 converge to regulate cell survival, proliferation and migration in medulloblastoma. Acta Neuropathol 2012; 123(4): 539-52. doi: 10.1007/s00401-012-0969-5 PMID: 22402744
  83. Panwalkar P, Moiyadi A, Goel A, et al. MiR-206, a cerebellum enriched miRNA is downregulated in all medulloblastoma subgroups and its overexpression is necessary for growth inhibition of medulloblastoma cells. J Mol Neurosci 2015; 56(3): 673-80. doi: 10.1007/s12031-015-0548-z PMID: 25859932
  84. Shi JA, Lu DL, Huang X, Tan W. miR-219 inhibits the proliferation, migration and invasion of medulloblastoma cells by targeting CD164. Int J Mol Med 2014; 34(1): 237-43. doi: 10.3892/ijmm.2014.1749 PMID: 24756834
  85. Xu QF, Pan YW, Li LC, et al. MiR-22 is frequently downregulated in medulloblastomas and inhibits cell proliferation via the novel target PAPST1. Brain Pathol 2014; 24(6): 568-83. doi: 10.1111/bpa.12136 PMID: 24576181
  86. de Antonellis P, Medaglia C, Cusanelli E, et al. MiR-34a targeting of Notch ligand delta-like 1 impairs CD15+/CD133+ tumor-propagating cells and supports neural differentiation in medulloblastoma. PLoS One 2011; 6(9): e24584. doi: 10.1371/journal.pone.0024584 PMID: 21931765
  87. Tanaka T, Arai M, Jiang X, et al. Downregulation of microRNA-431 by human interferon-β inhibits viability of medulloblastoma and glioblastoma cells via upregulation of SOCS6. Int J Oncol 2014; 44(5): 1685-90. doi: 10.3892/ijo.2014.2317 PMID: 24584142
  88. Zhou X, Ye F, Yin C, Zhuang Y, Yue G, Zhang G. The interaction between MiR-141 and lncRNA-H19 in regulating cell proliferation and migration in gastric cancer. Cell Physiol Biochem 2015; 36(4): 1440-52. doi: 10.1159/000430309 PMID: 26160158
  89. Beccaria K, Padovani L, Bouchoucha Y, Doz F. Current treatments of medulloblastoma. Curr Opin Oncol 2021; 33(6): 615-20. doi: 10.1097/CCO.0000000000000788 PMID: 34482338
  90. Bouffet E. Management of high-risk medulloblastoma. Neurochirurgie 2021; 67(1): 61-8. doi: 10.1016/j.neuchi.2019.05.007 PMID: 31229532
  91. Menyhárt O, Giangaspero F. Győrffy B. Molecular markers and potential therapeutic targets in non-WNT/non-SHH (group 3 and group 4) medulloblastomas. J Hematol Oncol 2019; 12(1): 29. doi: 10.1186/s13045-019-0712-y PMID: 30876441
  92. Packer RJ, Vezina G. Management of and prognosis with medulloblastoma: Therapy at a crossroads. Arch Neurol 2008; 65(11): 1419-24. doi: 10.1001/archneur.65.11.1419 PMID: 19001159
  93. Northcott PA, Robinson GW, Kratz CP, et al. Medulloblastoma. Nat Rev Dis Primers 2019; 5(1): 11. doi: 10.1038/s41572-019-0063-6 PMID: 30765705
  94. Rossi A, Caracciolo V, Russo G, Reiss K, Giordano A. Medulloblastoma: From molecular pathology to therapy. Clin Cancer Res 2008; 14(4): 971-6. doi: 10.1158/1078-0432.CCR-07-2072 PMID: 18281528
  95. Palla M, Scarpato L, Di Trolio R, Ascierto PA. Sonic hedgehog pathway for the treatment of inflammatory diseases: Implications and opportunities for future research. J Immunother Cancer 2022; 10(6): e004397. doi: 10.1136/jitc-2021-004397 PMID: 35710292
  96. Szklarczyk D, Gable AL, Nastou KC, et al. The STRING database in 2021: Customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res 2021; 49(D1): D605-12. doi: 10.1093/nar/gkaa1074 PMID: 33237311
  97. Simonneau C, Duschmalé M, Gavrilov A, et al. Investigating receptor-mediated antibody transcytosis using blood-brain barrier organoid arrays. Fluids Barriers CNS 2021; 18(1): 43. doi: 10.1186/s12987-021-00276-x PMID: 34544422
  98. Presutti D, Ceccarelli M, Micheli L, et al. Tis21-gene therapy inhibits medulloblastoma growth in a murine allograft model. PLoS One 2018; 13(3): e0194206. doi: 10.1371/journal.pone.0194206 PMID: 29538458
  99. Li S, McLendon R, Sankey E, et al. CD155 is a putative therapeutic target in medulloblastoma. Clin Transl Oncol 2022; 25(3): 696-705. doi: 10.1007/s12094-022-02975-9 PMID: 36301489
  100. Marques RF, Moreno DA, da Silva L, et al. Digital expression profile of immune checkpoint genes in medulloblastomas identifies CD24 and CD276 as putative immunotherapy targets. Front Immunol 2023; 14: 1062856. doi: 10.3389/fimmu.2023.1062856 PMID: 36825029
  101. Wen J, Hadden MK. Medulloblastoma drugs in development: Current leads, trials and drawbacks. Eur J Med Chem 2021; 215: 113268. doi: 10.1016/j.ejmech.2021.113268 PMID: 33636537
  102. Atta H, Alzahaby N, Hamdy NM, Emam SH, Sonousi A, Ziko L. New trends in synthetic drugs and natural products targeting 20S proteasomes in cancers. Bioorg Chem 2023; 133: 106427. doi: 10.1016/j.bioorg.2023.106427 PMID: 36841046
  103. Mostafa AM, Hamdy NM, Abdel-Rahman SZ, El-Mesallamy HO. Effect of vildagliptin and pravastatin combination on cholesterol efflux in adipocytes. IUBMB Life 2016; 68(7): 535-43. doi: 10.1002/iub.1510 PMID: 27251372
  104. Hamdy NM, Suwailem SM, El-Mesallamy HO. Influence of vitamin E supplementation on endothelial complications in type 2 diabetes mellitus patients who underwent coronary artery bypass graft. J Diabetes Complications 2009; 23(3): 167-73. doi: 10.1016/j.jdiacomp.2007.10.006 PMID: 18413198
  105. Negri M, Gentile A, de Angelis C, et al. Vitamin D-induced molecular mechanisms to potentiate cancer therapy and to reverse drug-resistance in cancer cells. Nutrients 2020; 12(6): 1798. doi: 10.3390/nu12061798 PMID: 32560347
  106. Levy AS, Krailo M, Chi S, et al. Temozolomide with irinotecan versus temozolomide, irinotecan plus bevacizumab for recurrent medulloblastoma of childhood: Report of a COG randomized Phase II screening trial. Pediatr Blood Cancer 2021; 68(8): e29031. doi: 10.1002/pbc.29031 PMID: 33844469
  107. Elamin MH, Shinwari Z, Hendrayani SF, et al. Curcumin inhibits the sonic hedgehog signaling pathway and triggers apoptosis in medulloblastoma cells. Mol Carcinog 2010; 49(3): 302-14. doi: 10.1002/mc.20604 PMID: 20025076
  108. Gong W, Zhao W, Liu G, Shi L, Zhao X. Curcumin analogue BDDD-721 exhibits more potent anticancer effects than curcumin on medulloblastoma by targeting Shh/Gli1 signaling pathway. Aging 2022; 14(13): 5464-77. doi: 10.18632/aging.204161 PMID: 35802536
  109. Maier H, Dalianis T, Kostopoulou ON. New approaches in targeted therapy for medulloblastoma in children. Anticancer Res 2021; 41(4): 1715-26. doi: 10.21873/anticanres.14936 PMID: 33813375
  110. Schönholzer MT, Migliavacca J, Alvarez E, et al. Real-time sensing of MAPK signaling in medulloblastoma cells reveals cellular evasion mechanism counteracting dasatinib blockade of ERK activation during invasion. Neoplasia 2020; 22(10): 470-83. doi: 10.1016/j.neo.2020.07.006 PMID: 32818841
  111. Li Y, Song Q, Day BW. Phase I and phase II sonidegib and vismodegib clinical trials for the treatment of paediatric and adult MB patients: A systemic review and meta-analysis. Acta Neuropathol Commun 2019; 7(1): 123. doi: 10.1186/s40478-019-0773-8 PMID: 31362788
  112. Xie H, Paradise BD, Ma WW, Fernandez-Zapico ME. Recent advances in the clinical targeting of Hedgehog/GLI signaling in cancer. Cells 2019; 8(5): 394. doi: 10.3390/cells8050394 PMID: 31035664
  113. Luo J, Wang J, Yang J, et al. Saikosaponin B1 and Saikosaponin D inhibit tumor growth in medulloblastoma allograft mice via inhibiting the hedgehog signaling pathway. J Nat Med 2022; 76(3): 584-93. doi: 10.1007/s11418-022-01603-8 PMID: 35171398
  114. El Moukhtari SH, Garbayo E, Fernández-Teijeiro A, Rodríguez-Nogales C, Couvreur P, Blanco-Prieto MJ. Nanomedicines and cell-based therapies for embryonal tumors of the nervous system. J Control Release 2022; 348: 553-71. doi: 10.1016/j.jconrel.2022.06.010 PMID: 35705114
  115. Hamdy NM, Shaker FH, Zhan X, Basalious EB. Tangled quest of post-COVID-19 infection-caused neuropathology and what 3P nano-bio-medicine can solve? EPMA J 2022; 13(2): 261-84. doi: 10.1007/s13167-022-00285-2 PMID: 35668839
  116. Yousry C, Zikry PM, Salem HM, Basalious EB, El-Gazayerly ON. Integrated nanovesicular/self-nanoemulsifying system (INV/SNES) for enhanced dual ocular drug delivery: Statistical optimization, in vitro and in vivo evaluation. Drug Deliv Transl Res 2020; 10(3): 801-14. doi: 10.1007/s13346-020-00716-5 PMID: 31989414
  117. Basalious EB, Abdallah Ahmed M. Phospholipid based self-nanoemulsifying self-nanosuspension (p-SNESNS) as a dual solubilization approach for development of formulation with diminished food effect: Fast/fed in vivo pharmacokinetics study in human. Eur J Pharm Sci 2017; 109: 244-52. doi: 10.1016/j.ejps.2017.08.017 PMID: 28823855
  118. Ma Y, Cong Z, Gao P, Wang Y. Nanosuspensions technology as a master key for nature products drug delivery and in vivo fate. Eur J Pharm Sci 2023; 185: 106425. doi: 10.1016/j.ejps.2023.106425 PMID: 36934992
  119. El-Setouhy DA, Basalious EB, Abdelmalak NS. Bioenhanced sublingual tablet of drug with limited permeability using novel surfactant binder and microencapsulated polysorbate: In vitro/in vivo evaluation. Eur J Pharm Biopharm 2015; 94: 386-92. doi: 10.1016/j.ejpb.2015.06.006 PMID: 26086847
  120. Shamma RN, Basalious EB, Shoukri R. Development of novel sustained release matrix pellets of betahistine dihydrochloride: effect of lipophilic surfactants and co-surfactants. Pharm Dev Technol 2012; 17(5): 583-93. doi: 10.3109/10837450.2011.557730 PMID: 21770719
  121. Hamdy NM, Eskander G, Basalious EB. Insights on the dynamic innovative tumor targeted-nanoparticles-based drug delivery systems activation techniques. Int J Nanomedicine 2022; 17: 6131-55. doi: 10.2147/IJN.S386037 PMID: 36514378
  122. Xiong B, Wang Y, Chen Y, et al. strategies for structural modification of small molecules to improve blood–brain barrier penetration: A recent perspective. J Med Chem 2021; 64(18): 13152-73. doi: 10.1021/acs.jmedchem.1c00910 PMID: 34505508
  123. Fouad SA, Shamma RN, Basalious EB, El-Nabarawi MM, Tayel SA. Novel instantly-dispersible nanocarrier powder system (IDNPs) for intranasal delivery of dapoxetine hydrochloride: In-vitro optimization, ex-vivo permeation studies, and in-vivo evaluation. Drug Dev Ind Pharm 2018; 44(9): 1443-50. doi: 10.1080/03639045.2018.1459675 PMID: 29614890
  124. Lakkadwala S, Singh J. Dual functionalized 5-fluorouracil liposomes as highly efficient nanomedicine for glioblastoma treatment as assessed in an in vitro brain tumor model. J Pharm Sci 2018; 107(11): 2902-13. doi: 10.1016/j.xphs.2018.07.020 PMID: 30055226
  125. Mohsen K, Azzazy HME, Allam NK, Basalious EB. Intranasal lipid nanocapsules for systemic delivery of nimodipine into the brain: In vitro optimization and in vivo pharmacokinetic study. Mater Sci Eng C 2020; 116: 111236. doi: 10.1016/j.msec.2020.111236 PMID: 32806316
  126. Alberto M, Paiva-Santos AC, Veiga F, Pires PC. Lipid and polymeric nanoparticles: Successful strategies for nose-to-brain drug delivery in the treatment of depression and anxiety disorders. Pharmaceutics 2022; 14(12): 2742. doi: 10.3390/pharmaceutics14122742 PMID: 36559236
  127. ElShagea HN, Makar RR, Salama AH, Elkasabgy NA, Basalious EB. Investigating the targeting power to brain tissues of intranasal rasagiline mesylate-loaded transferosomal in situ gel for efficient treatment of Parkinson’s disease. Pharmaceutics 2023; 15(2): 533. doi: 10.3390/pharmaceutics15020533 PMID: 36839855
  128. Ramaswamy V, Taylor MD. Medulloblastoma: From Myth to molecular. J Clin Oncol 2017; 35(21): 2355-63. doi: 10.1200/JCO.2017.72.7842 PMID: 28640708
  129. Borah A, Pillai SC, Rochani AK, et al. GANT61 and curcumin-loaded PLGA nanoparticles for GLI1 and PI3K/Akt-mediated inhibition in breast adenocarcinoma. Nanotechnology 2020; 31(18): 185102. doi: 10.1088/1361-6528/ab6d20 PMID: 31952056
  130. Caimano M, Lospinoso Severini L, Loricchio E, Infante P, Di Marcotullio L. Drug delivery systems for hedgehog inhibitors in the treatment of shh-medulloblastoma. Front Chem 2021; 9: 688108. doi: 10.3389/fchem.2021.688108 PMID: 34164380
  131. MacDonald TJ, Liu J, Yu B, et al. Liposome-imipramine blue inhibits sonic hedgehog medulloblastoma in vivo. Cancers 2021; 13(6): 1220. doi: 10.3390/cancers13061220 PMID: 33799550
  132. Song W, Tang Z, Lei T, et al. Stable loading and delivery of disulfiram with mPEG-PLGA/PCL mixed nanoparticles for tumor therapy. Nanomedicine 2016; 12(2): 377-86. doi: 10.1016/j.nano.2015.10.022 PMID: 26711966
  133. Malik S, Muhammad K, Waheed Y. Emerging applications of nanotechnology in healthcare and medicine. Molecules 2023; 28(18): 6624. doi: 10.3390/molecules28186624 PMID: 37764400
  134. Ahmad F, Varghese R, Panda S, et al. Smart nanoformulations for brain cancer theranostics: Challenges and promises. Cancers 2022; 14(21): 5389. doi: 10.3390/cancers14215389 PMID: 36358807
  135. Kennedy LB, Salama AKS. A review of cancer immunotherapy toxicity. CA Cancer J Clin 2020; 70(2): 86-104. doi: 10.3322/caac.21596 PMID: 31944278
  136. El-Mesallamy HO, Hamdy NM, El-Etriby AK, Wasfey EF. Plasma granzyme B in ST elevation myocardial infarction versus non-ST elevation acute coronary syndrome: Comparisons with IL-18 and fractalkine. Mediators Inflamm 2013; 2013: 1-8. doi: 10.1155/2013/343268 PMID: 24307760
  137. El Mesallamy HO, Hamdy NM, Mostafa DM, Amin AI. The serine protease granzyme B as an inflammatory marker, in relation to the insulin receptor cleavage in human obesity and type 2 diabetes mellitus. J Interferon Cytokine Res 2014; 34(3): 179-86. doi: 10.1089/jir.2013.0059 PMID: 24195710
  138. Sanad EF, Hamdy NM, El-Etriby AK, Sebak SA, El-Mesallamy HO. Peripheral leucocytes and tissue gene expression of granzyme B/perforin system and serpinB9: Impact on inflammation and insulin resistance in coronary atherosclerosis. Diabetes Res Clin Pract 2017; 131: 132-41. doi: 10.1016/j.diabres.2017.07.013 PMID: 28743062
  139. Luzzi S, Giotta Lucifero A, Brambilla I, et al. Targeting the medulloblastoma: A molecular-based approach. Acta Biomed 2020; 91(7-S): 79-100. PMID: 32608377
  140. Khatua S, Cooper LJN, Sandberg DI, et al. Phase I study of intraventricular infusions of autologous ex vivo expanded NK cells in children with recurrent medulloblastoma and ependymoma. Neuro-oncol 2020; 22(8): 1214-25. doi: 10.1093/neuonc/noaa047 PMID: 32152626
  141. Hammad R, Aglan RB, Mohammed SA, et al. Cytotoxic T cell expression of leukocyte-associated immunoglobulin-like receptor-1 (LAIR-1) in viral hepatitis C-mediated hepatocellular carcinoma. Int J Mol Sci 2022; 23(20): 12541. doi: 10.3390/ijms232012541 PMID: 36293412
  142. Ali NA, Hamdy NM, Gibriel AA. EL Mesallamy HO. Investigation of the relationship between CTLA4 and the tumor suppressor RASSF1A and the possible mediating role of STAT4 in a cohort of Egyptian patients infected with hepatitis C virus with and without hepatocellular carcinoma. Arch Virol 2021; 166(6): 1643-51. doi: 10.1007/s00705-021-04981-8 PMID: 33796885
  143. Youssef SS, Hamdy NM. SOCS1 and pattern recognition receptors: TLR9 and RIG-I; novel haplotype associations in Egyptian fibrotic/cirrhotic patients with HCV genotype 4. Arch Virol 2017; 162(11): 3347-54. doi: 10.1007/s00705-017-3498-7 PMID: 28762092
  144. Menyhárt O. Győrffy B. Molecular stratifications, biomarker candidates and new therapeutic options in current medulloblastoma treatment approaches. Cancer Metastasis Rev 2020; 39(1): 211-33. doi: 10.1007/s10555-020-09854-1 PMID: 31970590

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Bentham Science Publishers, 2024