Advances in the Treatment of Kidney Disorders using Mesenchymal Stem Cells


Cite item

Full Text

Abstract

:Renal disease is a medical condition that poses a potential threat to the life of an individual and is related to substantial morbidity and mortality rates in clinical environments. The aetiology of this condition is influenced by multiple factors, and its incidence tends to increase with progressive aging. Although supportive therapy and kidney transplantation have potential advantages, they also have limitations in terms of mitigating the progression of KD. Despite significant advancements in the domain of supportive therapy, mortality rates in patients continue to increase. Due to their ability to self-renew and multidirectionally differentiate, stem cell therapy has been shown to have tremendous potential in the repair of the diseased kidney. MSCs (Mesenchymal stem cells) are a cell population that is extensively distributed and can be located in various niches throughout an individual's lifespan. The cells in question are characterised by their potential for indefinite replication and their aptitude for undergoing differentiation into fully developed cells of mesodermal origin under laboratory conditions. It is essential to emphasize that MSCs have demonstrated a favorable safety profile and efficacy as a therapeutic intervention for renal diseases in both preclinical as well as clinical investigations. MSCs have been found to slow the advancement of kidney disease, and this impact is thought to be due to their control over a number of physiological processes, including immunological response, tubular epithelial- mesenchymal transition, oxidative stress, renal tubular cell death, and angiogenesis. In addition, MSCs demonstrate recognised effectiveness in managing both acute and chronic kidney diseases via paracrine pathways. The proposal to utilise a therapy that is based on stem-cells as an effective treatment has been put forward in search of discovering novel therapies to promote renal regeneration. Preclinical researchers have demonstrated that various types of stem cells can provide advantages in acute and chronic kidney disease. Moreover, preliminary results from clinical trials have suggested that these interventions are both safe and well-tolerated. This manuscript provides a brief overview of the potential renoprotective effects of stem cell-based treatments in acute as well as chronic renal dysfunction. Furthermore, the mechanisms that govern the process of kidney regeneration induced by stem cells are investigated. This article will examine the therapeutic approaches that make use of stem cells for the treatment of kidney disorders. The analysis will cover various cellular sources that have been utilised, potential mechanisms involved, and the outcomes that have been achieved so far.

About the authors

Shivam Rajput

Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University

Email: info@benthamscience.net

Rishabha Malviya

Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University

Author for correspondence.
Email: info@benthamscience.net

Prerna Uniyal

School of Pharmacy, Graphic Era Hill University

Email: info@benthamscience.net

References

  1. Jager KJ, Fraser SDS. The ascending rank of chronic kidney disease in the global burden of disease study. Nephrol Dial Transplant 2017; 32(Suppl. 2): ii121-8. doi: 10.1093/ndt/gfw330 PMID: 28201666
  2. Levey AS, Coresh J. Chronic kidney disease. Lancet 2012; 379(9811): 165-80. doi: 10.1016/S0140-6736(11)60178-5 PMID: 21840587
  3. Couser WG, Remuzzi G, Mendis S, Tonelli M. The contribution of chronic kidney disease to the global burden of major noncommunicable diseases. Kidney Int 2011; 80(12): 1258-70. doi: 10.1038/ki.2011.368 PMID: 21993585
  4. Abecassis M, Bartlett ST, Collins AJ, et al. Kidney transplantation as primary therapy for end-stage renal disease: A National Kidney Foundation/Kidney Disease Outcomes Quality Initiative (NKF/KDOQITM) conference. Clin J Am Soc Nephrol 2008; 3(2): 471-80. doi: 10.2215/CJN.05021107 PMID: 18256371
  5. Wolfe RA, Ashby VB, Milford EL, et al. Comparison of mortality in all patients on dialysis, patients on dialysis awaiting transplantation, and recipients of a first cadaveric transplant. N Engl J Med 1999; 341(23): 1725-30. doi: 10.1056/NEJM199912023412303 PMID: 10580071
  6. Levin A, Tonelli M, Bonventre J, et al. Global kidney health 2017 and beyond: A roadmap for closing gaps in care, research, and policy. Lancet 2017; 390(10105): 1888-917. doi: 10.1016/S0140-6736(17)30788-2 PMID: 28434650
  7. Ferenbach DA, Bonventre JV. Acute kidney injury and chronic kidney disease: From the laboratory to the clinic. Nephrol Ther 2016; 12(Suppl 1) (Suppl. 1): S41-8. doi: 10.1016/j.nephro.2016.02.005 PMID: 26972097
  8. Case J, Khan S, Khalid R, Khan A. Epidemiology of acute kidney injury in the intensive care unit. Crit Care Res Pract 2013; 2013: 1-9. doi: 10.1155/2013/479730 PMID: 23573420
  9. Khwaja A. KDIGO clinical practice guidelines for acute kidney injury. Nephron Clin Pract 2012; 120(4): c179-84. doi: 10.1159/000339789 PMID: 22890468
  10. Bellomo R, Kellum JA, Ronco C. Acute kidney injury. Lancet 2012; 380(9843): 756-66. doi: 10.1016/S0140-6736(11)61454-2 PMID: 22617274
  11. Malhotra R, Siew ED. Biomarkers for the early detection and prognosis of acute kidney injury. Clin J Am Soc Nephrol 2017; 12(1): 149-73. doi: 10.2215/CJN.01300216 PMID: 27827308
  12. Vos T, Barber RM, Bell B, et al. Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990–2013: A systematic analysis for the Global Burden of Disease Study 2013. Lancet 2015; 386(9995): 743-800. doi: 10.1016/S0140-6736(15)60692-4 PMID: 26063472
  13. Hulse M, Rosner MH. Drugs in development for acute kidney injury. Drugs 2019; 79(8): 811-21. doi: 10.1007/s40265-019-01119-8 PMID: 31004331
  14. Thomson JA, Itskovitz-Eldor J, Shapiro SS, et al. Embryonic stem cell lines derived from human blastocysts. Science 1998; 282(5391): 1145-7.
  15. Klimanskaya I, Chung Y, Becker S, Lu SJ, Lanza R. Human embryonic stem cell lines derived from single blastomeres. Nature 2006; 444(7118): 481-5. doi: 10.1038/nature05142 PMID: 16929302
  16. Zhang SC, Wernig M, Duncan ID, Brüstle O, Thomson JA. In vitro differentiation of transplantable neural precursors from human embryonic stem cells. Nat Biotechnol 2001; 19(12): 1129-33. doi: 10.1038/nbt1201-1129 PMID: 11731781
  17. Kaufman DS, Hanson ET, Lewis RL, Auerbach R, Thomson JA. Hematopoietic colony-forming cells derived from human embryonic stem cells. Proc Natl Acad Sci USA 2001; 98(19): 10716-21. doi: 10.1073/pnas.191362598 PMID: 11535826
  18. He JQ, Ma Y, Lee Y, Thomson JA, Kamp TJ. Human embryonic stem cells develop into multiple types of cardiac myocytes: Action potential characterization. Circ Res 2003; 93(1): 32-9. doi: 10.1161/01.RES.0000080317.92718.99 PMID: 12791707
  19. Assady S, Maor G, Amit M, Itskovitz-Eldor J, Skorecki KL, Tzukerman M. Insulin production by human embryonic stem cells. Diabetes 2001; 50(8): 1691-7.
  20. Ilic D, Ogilvie C. Concise review: Human embryonic stem cells- what have we done? What are we doing? Where are we going? Stem Cells 2017; 35(1): 17-25. doi: 10.1002/stem.2450 PMID: 27350255
  21. Kariminekoo S, Movassaghpour A, Rahimzadeh A, Talebi M, Shamsasenjan K, Akbarzadeh A. Implications of mesenchymal stem cells in regenerative medicine. Artif Cells Nanomed Biotechnol 2016; 44(3): 749-57. doi: 10.3109/21691401.2015.1129620 PMID: 26757594
  22. Seo MJ, Suh SY, Bae YC, Jung JS. Differentiation of human adipose stromal cells into hepatic lineage in vitro and in vivo. Biochem Biophys Res Commun 2005; 328(1): 258-64. doi: 10.1016/j.bbrc.2004.12.158 PMID: 15670778
  23. Murphy MB, Moncivais K, Caplan AI. Mesenchymal stem cells: Environmentally responsive therapeutics for regenerative medicine. Exp Mol Med 2013; 45(11): e54. doi: 10.1038/emm.2013.94 PMID: 24232253
  24. Le Blanc K. Immunomodulatory effects of fetal and adult mesenchymal stem cells. Cytotherapy 2003; 5(6): 485-9. doi: 10.1080/14653240310003611 PMID: 14660044
  25. Luz-Crawford P, Kurte M, Bravo-Alegría J, et al. Mesenchymal stem cells generate a CD4+CD25+Foxp3+ regulatory T cell population during the differentiation process of Th1 and Th17 cells. Stem Cell Res Ther 2013; 4(3): 65. doi: 10.1186/scrt216 PMID: 23734780
  26. Maumus M, Guérit D, Toupet K, Jorgensen C, Noël D. Mesenchymal stem cell-based therapies in regenerative medicine: Applications in rheumatology. Stem Cell Res Ther 2011; 2(2): 14. doi: 10.1186/scrt55 PMID: 21457518
  27. Duran NE, Hommes DW. Stem cell-based therapies in inflammatory bowel disease: Promises and pitfalls. Therap Adv Gastroenterol 2016; 9(4): 533-47. doi: 10.1177/1756283X16642190 PMID: 27366222
  28. Zhang B, Yin Y, Lai RC, Tan SS, Choo ABH, Lim SK. Mesenchymal stem cells secrete immunologically active exosomes. Stem Cells Dev 2014; 23(11): 1233-44. doi: 10.1089/scd.2013.0479 PMID: 24367916
  29. Monguió-Tortajada M, Roura S, Gálvez-Montón C, et al. Nanosized UCMSC-derived extracellular vesicles but not conditioned medium exclusively inhibit the inflammatory response of stimulated T cells: Implications for nanomedicine. Theranostics 2017; 7(2): 270-84. doi: 10.7150/thno.16154 PMID: 28042333
  30. Maqsood M, Kang M, Wu X, Chen J, Teng L, Qiu L. Adult mesenchymal stem cells and their exosomes: Sources, characteristics, and application in regenerative medicine. Life Sci 2020; 256: 118002. doi: 10.1016/j.lfs.2020.118002 PMID: 32585248
  31. Han Q, Wang X, Ding X, He J, Cai G, Zhu H. Immunomodulatory effects of mesenchymal stem cells on drug-induced acute kidney injury. Front Immunol 2021; 12: 683003. doi: 10.3389/fimmu.2021.683003 PMID: 34149721
  32. Brown C, McKee C, Bakshi S, et al. Mesenchymal stem cells: Cell therapy and regeneration potential. J Tissue Eng Regen Med 2019; 13(9): 1738-55. doi: 10.1002/term.2914 PMID: 31216380
  33. Heo JS, Choi Y, Kim HS, Kim HO. Comparison of molecular profiles of human mesenchymal stem cells derived from bone marrow, umbilical cord blood, placenta and adipose tissue. Int J Mol Med 2016; 37(1): 115-25. doi: 10.3892/ijmm.2015.2413 PMID: 26719857
  34. Fazeli Z, Abedindo A, Omrani MD, Ghaderian SMH. Mesenchymal stem cells (MSCs) therapy for recovery of fertility: A systematic review. Stem Cell Rev 2018; 14(1): 1-12. doi: 10.1007/s12015-017-9765-x PMID: 28884412
  35. Wang Y, Chen X, Cao W, Shi Y. Plasticity of mesenchymal stem cells in immunomodulation: Pathological and therapeutic implications. Nat Immunol 2014; 15(11): 1009-16. doi: 10.1038/ni.3002 PMID: 25329189
  36. Lee PW, Wu BS, Yang CY, Lee OKS. Molecular mechanisms of mesenchymal stem cell-based therapy in acute kidney injury. Int J Mol Sci 2021; 22(21): 11406. doi: 10.3390/ijms222111406 PMID: 34768837
  37. Wong CY. Current advances of stem cell-based therapy for kidney diseases. World J Stem Cells 2021; 13(7): 914-33. doi: 10.4252/wjsc.v13.i7.914 PMID: 34367484
  38. Wen Y, Yan HR, Wang B, Liu BC. Macrophage heterogeneity in kidney injury and fibrosis. Front Immunol 2021; 12: 681748. doi: 10.3389/fimmu.2021.681748 PMID: 34093584
  39. Heerspink HJL, Perco P, Mulder S, et al. Canagliflozin reduces inflammation and fibrosis biomarkers: A potential mechanism of action for beneficial effects of SGLT2 inhibitors in diabetic kidney disease. Diabetologia 2019; 62(7): 1154-66. doi: 10.1007/s00125-019-4859-4 PMID: 31001673
  40. Martos-Rus C, Katz-Greenberg G, Lin Z, et al. Macrophage and adipocyte interaction as a source of inflammation in kidney disease. Sci Rep 2021; 11(1): 2974. doi: 10.1038/s41598-021-82685-4 PMID: 33536542
  41. Klessens CQF, Zandbergen M, Wolterbeek R, et al. Macrophages in diabetic nephropathy in patients with type 2 diabetes. Nephrol Dial Transplant 2017; 32(8): 1322-9. PMID: 27416772
  42. Nikolic-Paterson DJ, Wang S, Lan HY. Macrophages promote renal fibrosis through direct and indirect mechanisms. Kidney Int Suppl 2014; 4(1): 34-8. doi: 10.1038/kisup.2014.7 PMID: 26312148
  43. Viehmann SF, Böhner AMC, Kurts C, Brähler S. The multifaceted role of the renal mononuclear phagocyte system. Cell Immunol 2018; 330: 97-104. doi: 10.1016/j.cellimm.2018.04.009 PMID: 29748002
  44. Wise AF, Ricardo SD. Mesenchymal stem cells in kidney inflammation and repair. Nephrology 2012; 17(1): 1-10. doi: 10.1111/j.1440-1797.2011.01501.x PMID: 21777348
  45. Xiang E, Han B, Zhang Q, et al. Human umbilical cord-derived mesenchymal stem cells prevent the progression of early diabetic nephropathy through inhibiting inflammation and fibrosis. Stem Cell Res Ther 2020; 11(1): 336. doi: 10.1186/s13287-020-01852-y PMID: 32746936
  46. Lee KH, Tseng WC, Yang CY, Tarng DC. The anti-inflammatory, anti-oxidative, and anti-apoptotic benefits of stem cells in acute ischemic kidney injury. Int J Mol Sci 2019; 20(14): 3529. doi: 10.3390/ijms20143529 PMID: 31330934
  47. Imberti B, Morigi M, Benigni A. Potential of mesenchymal stem cells in the repair of tubular injury. Kidney Int Suppl 2011; 1(3): 90-3. doi: 10.1038/kisup.2011.21 PMID: 25028629
  48. Birtwistle L, Chen XM, Pollock C. Mesenchymal stem cell- derived extracellular vesicles to the rescue of renal injury. Int J Mol Sci 2021; 22(12): 6596. doi: 10.3390/ijms22126596 PMID: 34202940
  49. Guo J, Wang R, Liu D. Bone marrow-derived mesenchymal stem cells ameliorate sepsis-induced acute kidney injury by promoting mitophagy of renal tubular epithelial cells via the SIRT1/Parkin axis. Front Endocrinol 2021; 12: 639165. doi: 10.3389/fendo.2021.639165 PMID: 34248837
  50. Tseng WC, Lee PY, Tsai MT, et al. Hypoxic mesenchymal stem cells ameliorate acute kidney ischemia-reperfusion injury via enhancing renal tubular autophagy. Stem Cell Res Ther 2021; 12(1): 367. doi: 10.1186/s13287-021-02374-x PMID: 34183058
  51. Higgins DF, Kimura K, Bernhardt WM, et al. Hypoxia promotes fibrogenesis in vivo via HIF-1 stimulation of epithelial-to-mesenchymal transition. J Clin Invest 2007; 117(12): 3810-20. doi: 10.1172/JCI30487 PMID: 18037992
  52. Xing L, Cui R, Peng L, et al. Mesenchymal stem cells, not conditioned medium, contribute to kidney repair after ischemia-reperfusion injury. Stem Cell Res Ther 2014; 5(4): 101. doi: 10.1186/scrt489 PMID: 25145540
  53. Chen J, Park HC, Addabbo F, et al. Kidney-derived mesenchymal stem cells contribute to vasculogenesis, angiogenesis and endothelial repair. Kidney Int 2008; 74(7): 879-89. doi: 10.1038/ki.2008.304 PMID: 18596729
  54. Villanueva S, Carreño JE, Salazar L, et al. Human mesenchymal stem cells derived from adipose tissue reduce functional and tissue damage in a rat model of chronic renal failure. Clin Sci 2013; 125(4): 199-210. doi: 10.1042/CS20120644 PMID: 23480877
  55. Humphreys BD. Mechanisms of renal fibrosis. Annu Rev Physiol 2018; 80(1): 309-26. doi: 10.1146/annurev-physiol-022516-034227 PMID: 29068765
  56. Wan J, Xie M, Zhang F, Zhang R, Zhou Z, You D. Influence of hepatocyte growth factor-transfected bone marrow-derived mesenchymal stem cells towards renal fibrosis in rats. Indian J Med Res 2019; 149(4): 508-16. doi: 10.4103/ijmr.IJMR_1527_16 PMID: 31411175
  57. Lin S, Yu L, Ni Y, et al. Fibroblast growth factor 21 attenuates diabetes-induced renal fibrosis by negatively regulating TGF-β-p53-Smad2/3-mediated epithelial-to-mesenchymal transition via activation of AKT. Diabetes Metab J 2020; 44(1): 158-72. doi: 10.4093/dmj.2018.0235 PMID: 31701691
  58. Zhuang Q, Ma R, Yin Y, Lan T, Yu M, Ming Y. Mesenchymal stem cells in renal fibrosis: The flame of cytotherapy. Stem Cells Int 2019; 2019: 1-18. doi: 10.1155/2019/8387350 PMID: 30766607
  59. Tang H, Zhang P, Zeng L, Zhao Y, Xie L, Chen B. Mesenchymal stem cells ameliorate renal fibrosis by galectin-3/Akt/GSK3β/Snail signaling pathway in adenine-induced nephropathy rat. Stem Cell Res Ther 2021; 12(1): 409. doi: 10.1186/s13287-021-02429-z
  60. Li S, Wang Y, Wang Z, et al. Enhanced renoprotective effect of GDNF-modified adipose-derived mesenchymal stem cells on renal interstitial fibrosis. Stem Cell Res Ther 2021; 12(1): 27. doi: 10.1186/s13287-020-02049-z PMID: 33413640
  61. Andrianova NV, Zorov DB, Plotnikov EY. Targeting inflammation and oxidative stress as a therapy for ischemic kidney injury. Biochemistry 2020; 85(12-13): 1591-602. doi: 10.1134/S0006297920120111 PMID: 33705297
  62. Daenen K, Andries A, Mekahli D, Van Schepdael A, Jouret F, Bammens B. Oxidative stress in chronic kidney disease. Pediatr Nephrol 2019; 34(6): 975-91. doi: 10.1007/s00467-018-4005-4 PMID: 30105414
  63. Coppolino G, Leonardi G, Andreucci M, Bolignano D. Oxidative stress and kidney function: A brief update. Curr Pharm Des 2019; 24(40): 4794-9. doi: 10.2174/1381612825666190112165206 PMID: 30648504
  64. Zhuo W, Liao L, Xu T, Wu W, Yang S, Tan J. Mesenchymal stem cells ameliorate ischemia-reperfusion-induced renal dysfunction by improving the antioxidant/oxidant balance in the ischemic kidney. Urol Int 2011; 86(2): 191-6. doi: 10.1159/000319366 PMID: 20881358
  65. Zhao L, Hu C, Zhang P, Jiang H, Chen J. Melatonin preconditioning is an effective strategy for mesenchymal stem cell-based therapy for kidney disease. J Cell Mol Med 2020; 24(1): 25-33. doi: 10.1111/jcmm.14769 PMID: 31747719
  66. Song IH, Jung KJ, Lee TJ, et al. Mesenchymal stem cells attenuate adriamycin-induced nephropathy by diminishing oxidative stress and inflammation via downregulation of the NF-kB. Nephrology 2018; 23(5): 483-92. doi: 10.1111/nep.13047 PMID: 28326639
  67. Yang CC, Sung PH, Chen KH, et al. Valsartan- and melatonin- supported adipose-derived mesenchymal stem cells preserve renal function in chronic kidney disease rat through upregulation of prion protein participated in promoting PI3K-Akt-mTOR signaling and cell proliferation. Biomed Pharmacother 2022; 146: 112551. doi: 10.1016/j.biopha.2021.112551 PMID: 34923336
  68. Uchiyama Y. Autophagic cell death and its execution by lysosomal cathepsins. Arch Histol Cytol 2001; 64(3): 233-46. doi: 10.1679/aohc.64.233 PMID: 11575420
  69. Scherz-Shouval R, Shvets E, Fass E, Shorer H, Gil L, Elazar Z. Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO J 2007; 26(7): 1749-60. doi: 10.1038/sj.emboj.7601623 PMID: 17347651
  70. Bursch W. The autophagosomal–lysosomal compartment in programmed cell death. Cell Death Differ 2001; 8(6): 569-81. doi: 10.1038/sj.cdd.4400852 PMID: 11536007
  71. Finn PF, Dice JF. Proteolytic and lipolytic responses to starvation. Nutrition 2006; 22(7-8): 830-44. doi: 10.1016/j.nut.2006.04.008 PMID: 16815497
  72. Cuervo AM. Autophagy: Many paths to the same end. Mol Cell Biochem 2004; 263(1/2): 55-72. doi: 10.1023/B:MCBI.0000041848.57020.57
  73. Zhang Z, Yang C, Shen M, et al. Autophagy mediates the beneficial effect of hypoxic preconditioning on bone marrow mesenchymal stem cells for the therapy of myocardial infarction. Stem Cell Res Ther 2017; 8(1): 89. doi: 10.1186/s13287-017-0543-0 PMID: 28420436
  74. Feng J, Lu C, Dai Q, Sheng J, Xu M. SIRT3 facilitates amniotic fluid stem cells to repair diabetic nephropathy through protecting mitochondrial homeostasis by modulation of mitophagy. Cell Physiol Biochem 2018; 46(4): 1508-24. doi: 10.1159/000489194 PMID: 29689547
  75. Li M, Jiang T, Zhang W, et al. Human umbilical cord MSC-derived hepatocyte growth factor enhances autophagy in AOPP- treated HK-2 cells. Exp Ther Med 2020; 20(3): 2765-73. doi: 10.3892/etm.2020.8998 PMID: 32765771
  76. Xiang J, Jiang T, Zhang W, Xie W, Tang X, Zhang J. Human umbilical cord-derived mesenchymal stem cells enhanced HK-2 cell autophagy through MicroRNA-145 by inhibiting the PI3K/AKT/ mTOR signaling pathway. Exp Cell Res 2019; 378(2): 198-205. doi: 10.1016/j.yexcr.2019.03.019 PMID: 30880031
  77. Gao L, Cen S, Wang P, et al. Autophagy improves the immunosuppression of CD4+ T cells by mesenchymal stem cells through transforming growth factor-β 1. Stem Cells Transl Med 2016; 5(11): 1496-505. doi: 10.5966/sctm.2015-0420 PMID: 27400793
  78. Volarevic V, Gazdic M, Simovic Markovic B, Jovicic N, Djonov V, Arsenijevic N. Mesenchymal stem cell-derived factors: Immuno-modulatory effects and therapeutic potential. Biofactors 2017; 43(5): 633-44. doi: 10.1002/biof.1374 PMID: 28718997
  79. Gorgoulis V, Adams PD, Alimonti A, et al. Cellular senescence: Defining a path forward. Cell 2019; 179(4): 813-27. doi: 10.1016/j.cell.2019.10.005 PMID: 31675495
  80. Sturmlechner I, Durik M, Sieben CJ, Baker DJ, van Deursen JM. Cellular senescence in renal ageing and disease. Nat Rev Nephrol 2017; 13(2): 77-89. doi: 10.1038/nrneph.2016.183 PMID: 28029153
  81. Docherty MH, O’Sullivan ED, Bonventre JV, Ferenbach DA. Cellular senescence in the kidney. J Am Soc Nephrol 2019; 30(5): 726-36. doi: 10.1681/ASN.2018121251 PMID: 31000567
  82. Baar MP, Brandt RMC, Putavet DA, et al. Targeted apoptosis of senescent cells restores tissue homeostasis in response to chemotoxicity and aging. Cell 2017; 169(1): 132-147.e16. doi: 10.1016/j.cell.2017.02.031 PMID: 28340339
  83. Kim SR, Puranik AS, Jiang K, et al. Progressive cellular senescence mediates renal dysfunction in ischemic nephropathy. J Am Soc Nephrol 2021; 32(8): 1987-2004. doi: 10.1681/ASN.2020091373 PMID: 34135081
  84. Johmura Y, Yamanaka T, Omori S, et al. Senolysis by glutaminolysis inhibition ameliorates various age-associated disorders. Science 2021; 371(6526): 265-70. doi: 10.1126/science.abb5916 PMID: 33446552
  85. Kim SR, Zou X, Tang H, et al. Increased cellular senescence in the murine and human stenotic kidney: Effect of mesenchymal stem cells. J Cell Physiol 2021; 236(2): 1332-44. doi: 10.1002/jcp.29940 PMID: 32657444
  86. Rodrigues CE, Capcha JMC, de Bragança AC, et al. Human umbilical cord-derived mesenchymal stromal cells protect against premature renal senescence resulting from oxidative stress in rats with acute kidney injury. Stem Cell Res Ther 2017; 8(1): 19. doi: 10.1186/s13287-017-0475-8 PMID: 28129785
  87. Ishiuchi T, Torres-Padilla ME. Towards an understanding of the regulatory mechanisms of totipotency. Curr Opin Genet Dev 2013; 23(5): 512-8. doi: 10.1016/j.gde.2013.06.006 PMID: 23942314
  88. Bałakier H, Pedersen RA. Allocation of cells to inner cell mass and trophectoderm lineages in preimplantation mouse embryos. Dev Biol 1982; 90(2): 352-62. doi: 10.1016/0012-1606(82)90384-0 PMID: 7075865
  89. Veiga A, Calderon G, Barri PN, Coroleu B. Pregnancy after the replacement of a frozen-thawed embryo with >50% intact blastomeres. Hum Reprod 1987; 2(4): 321-3. doi: 10.1093/oxfordjournals.humrep.a136542 PMID: 3624431
  90. Van de Velde H, Cauffman G, Tournaye H, Devroey P, Liebaers I. The four blastomeres of a 4-cell stage human embryo are able to develop individually into blastocysts with inner cell mass and trophectoderm. Hum Reprod 2008; 23(8): 1742-7. doi: 10.1093/humrep/den190 PMID: 18503052
  91. Tachibana M, Amato P, Sparman M, et al. Human embryonic stem cells derived by somatic cell nuclear transfer. Cell 2013; 153(6): 1228-38. doi: 10.1016/j.cell.2013.05.006 PMID: 23683578
  92. Zhou L, Dean J. Reprogramming the genome to totipotency in mouse embryos. Trends Cell Biol 2015; 25(2): 82-91. doi: 10.1016/j.tcb.2014.09.006 PMID: 25448353
  93. Strioga M, Viswanathan S, Darinskas A, Slaby O, Michalek J. Same or not the same? Comparison of adipose tissue-derived versus bone marrow-derived mesenchymal stem and stromal cells. Stem Cells Dev 2012; 21(14): 2724-52. doi: 10.1089/scd.2011.0722 PMID: 22468918
  94. Melief SM, Zwaginga JJ, Fibbe WE, Roelofs H. Adipose tissue-derived multipotent stromal cells have a higher immunomodulatory capacity than their bone marrow-derived counterparts. Stem Cells Transl Med 2013; 2(6): 455-63. doi: 10.5966/sctm.2012-0184 PMID: 23694810
  95. Lian Q, Zhang Y, Zhang J, et al. Functional mesenchymal stem cells derived from human induced pluripotent stem cells attenuate limb ischemia in mice. Circulation 2010; 121(9): 1113-23. doi: 10.1161/CIRCULATIONAHA.109.898312 PMID: 20176987
  96. Zhang Y, McNeill E, Tian H, et al. Urine derived cells are a potential source for urological tissue reconstruction. J Urol 2008; 180(5): 2226-33. doi: 10.1016/j.juro.2008.07.023 PMID: 18804817
  97. Bharadwaj S, Liu G, Shi Y, et al. Multipotential differentiation of human urine-derived stem cells: Potential for therapeutic applications in urology. Stem Cells 2013; 31(9): 1840-56. doi: 10.1002/stem.1424 PMID: 23666768
  98. Zhang D, Wei G, Li P, Zhou X, Zhang Y. Urine-derived stem cells: A novel and versatile progenitor source for cell-based therapy and regenerative medicine. Genes Dis 2014; 1(1): 8-17. doi: 10.1016/j.gendis.2014.07.001 PMID: 25411659
  99. Leuning DG, Reinders MEJ, Li J, et al. Clinical-grade isolated human kidney perivascular stromal cells as an organotypic cell source for kidney regenerative medicine. Stem Cells Transl Med 2017; 6(2): 405-18. doi: 10.5966/sctm.2016-0053 PMID: 28191776
  100. Narayanan K, Schumacher KM, Tasnim F, et al. Human embryonic stem cells differentiate into functional renal proximal tubular- like cells. Kidney Int 2013; 83(4): 593-603. doi: 10.1038/ki.2012.442 PMID: 23389418
  101. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. cell 2006; 126(4): 663-76.
  102. Takasato M, Er PX, Becroft M, et al. Directing human embryonic stem cell differentiation towards a renal lineage generates a self-organizing kidney. Nat Cell Biol 2014; 16(1): 118-26. doi: 10.1038/ncb2894 PMID: 24335651
  103. Spitalieri P, Talarico VR, Murdocca M, Novelli G, Sangiuolo F. Human induced pluripotent stem cells for monogenic disease modelling and therapy. World J Stem Cells 2016; 8(4): 118-35. doi: 10.4252/wjsc.v8.i4.118 PMID: 27114745
  104. Yang YH, Zhang RZ, Cheng S, et al. Generation of induced pluripotent stem cells from human epidermal keratinocytes. Cell Reprogram 2018; 20(6): 356-64. doi: 10.1089/cell.2018.0035 PMID: 30388030
  105. Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007; 131(5): 861-72.
  106. Nishishita N, Takenaka C, Fusaki N, Kawamata S. Generation of human induced pluripotent stem cells from cord blood cells. J Stem Cells 2011; 6(3): 101-8. PMID: 23264996
  107. Aoi T, Yae K, Nakagawa M, et al. Generation of pluripotent stem cells from adult mouse liver and stomach cells. Science 2008; 321(5889): 699-702. doi: 10.1126/science.1154884 PMID: 18276851
  108. Gu H, Huang X, Xu J, et al. Optimizing the method for generation of integration-free induced pluripotent stem cells from human peripheral blood. Stem Cell Res Ther 2018; 9(1): 163. doi: 10.1186/s13287-018-0908-z PMID: 29907164
  109. Kawano E, Toriumi T, Iguchi S, Suzuki D, Sato S, Honda M. Induction of neural crest cells from human dental pulp-derived induced pluripotent stem cells. Biomed Res 2017; 38(2): 135-47. doi: 10.2220/biomedres.38.135 PMID: 28442664
  110. Nagano S, Maeda T, Ichise H, et al. High frequency production of T cell-derived iPSC clones capable of generating potent cytotoxic T cells. Mol Ther Methods Clin Dev 2020; 16: 126-35. doi: 10.1016/j.omtm.2019.12.006 PMID: 31970197
  111. Horwitz EM, Gordon PL, Koo WKK, et al. Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: Implications for cell therapy of bone. Proc Natl Acad Sci USA 2002; 99(13): 8932-7. doi: 10.1073/pnas.132252399 PMID: 12084934
  112. Karp JM, Leng Teo GS. Mesenchymal stem cell homing: The devil is in the details. Cell Stem Cell 2009; 4(3): 206-16. doi: 10.1016/j.stem.2009.02.001 PMID: 19265660
  113. Sohni A, Verfaillie CM. Mesenchymal stem cells migration homing and tracking. Stem Cells Int 2013; 2013: 130763. doi: 10.1155/2013/130763
  114. Becker AD, Riet IV. Homing and migration of mesenchymal stromal cells: How to improve the efficacy of cell therapy? World J Stem Cells 2016; 8(3): 73-87. doi: 10.4252/wjsc.v8.i3.73 PMID: 27022438
  115. Herrera MB, Bussolati B, Bruno S, et al. Exogenous mesenchymal stem cells localize to the kidney by means of CD44 following acute tubular injury. Kidney Int 2007; 72(4): 430-41. doi: 10.1038/sj.ki.5002334 PMID: 17507906
  116. Liu N, Tian J, Cheng J, Zhang J. Migration of CXCR4 gene-modified bone marrow-derived mesenchymal stem cells to the acute injured kidney. J Cell Biochem 2013; 114(12): 2677-89. doi: 10.1002/jcb.24615 PMID: 23794207
  117. Bian XH, Zhou GY, Wang LN, et al. The role of CD44-hyaluronic acid interaction in exogenous mesenchymal stem cells homing to rat remnant kidney. Kidney Blood Press Res 2013; 38(1): 11-20. doi: 10.1159/000355749 PMID: 24503496
  118. Masoud MS, Anwar SS, Afzal MZ, Mehmood A, Khan SN, Riazuddin S. Pre-conditioned mesenchymal stem cells ameliorate renal ischemic injury in rats by augmented survival and engraftment. J Transl Med 2012; 10(1): 243. doi: 10.1186/1479-5876-10-243 PMID: 23217165
  119. Saberi K, Pasbakhsh P, Omidi A, et al. Melatonin preconditioning of bone marrow-derived mesenchymal stem cells promotes their engraftment and improves renal regeneration in a rat model of chronic kidney disease. J Mol Histol 2019; 50(2): 129-40. doi: 10.1007/s10735-019-09812-4 PMID: 30671880
  120. Si X, Liu X, Li J, Wu X. Transforming growth factor-β1 promotes homing of bone marrow mesenchymal stem cells in renal ischemia-reperfusion injury. Int J Clin Exp Pathol 2015; 8(10): 12368-78. PMID: 26722423
  121. Liu P, Feng Y, Dong C, et al. Administration of BMSCs with muscone in rats with gentamicin-induced AKI improves their therapeutic efficacy. PLoS One 2014; 9(5): e97123. doi: 10.1371/journal.pone.0097123 PMID: 24824427
  122. Liu N, Tian J, Cheng J, Zhang J. Effect of erythropoietin on the migration of bone marrow-derived mesenchymal stem cells to the acute kidney injury microenvironment. Exp Cell Res 2013; 319(13): 2019-27. doi: 10.1016/j.yexcr.2013.04.008 PMID: 23624354
  123. Yu X, Lu C, Liu H, et al. Hypoxic preconditioning with cobalt of bone marrow mesenchymal stem cells improves cell migration and enhances therapy for treatment of ischemic acute kidney injury. PLoS One 2013; 8(5): e62703. doi: 10.1371/journal.pone.0062703 PMID: 23671625
  124. Liu N, Patzak A, Zhang J. CXCR4-overexpressing bone marrow-derived mesenchymal stem cells improve repair of acute kidney injury. Am J Physiol Renal Physiol 2013; 305(7): F1064-73. doi: 10.1152/ajprenal.00178.2013 PMID: 23884141
  125. Wang G, Zhang Q, Zhuo Z, et al. Enhanced homing of CXCR-4 modified bone marrow–derived mesenchymal stem cells to acute kidney injury tissues by micro-bubble–mediated ultrasound exposure. Ultrasound Med Biol 2016; 42(2): 539-48. doi: 10.1016/j.ultrasmedbio.2015.10.005 PMID: 26610714
  126. Burks SR, Nagle ME, Bresler MN, Kim SJ, Star RA, Frank JA. Mesenchymal stromal cell potency to treat acute kidney injury increased by ultrasound-activated interferon-γ/interleukin-10 axis. J Cell Mol Med 2018; 22(12): 6015-25. doi: 10.1111/jcmm.13874 PMID: 30216653
  127. Burks SR, Nguyen BA, Tebebi PA, et al. Pulsed focused ultrasound pretreatment improves mesenchymal stromal cell efficacy in preventing and rescuing established acute kidney injury in mice. Stem Cells 2015; 33(4): 1241-53. doi: 10.1002/stem.1965 PMID: 25640064
  128. Ziadloo A, Burks SR, Gold EM, et al. Enhanced homing permeability and retention of bone marrow stromal cells by noninvasive pulsed focused ultrasound. Stem Cells 2012; 30(6): 1216-27. doi: 10.1002/stem.1099 PMID: 22593018
  129. McMahon AP. Development of the mammalian kidney. Curr Top Dev Biol 2016; 117: 31-64. doi: 10.1016/bs.ctdb.2015.10.010 PMID: 26969971
  130. Grobstein C. Inductive epitheliomesenchymal interaction in cultured organ rudiments of the mouse. Science 1953; 118(3054): 52-5. doi: 10.1126/science.118.3054.52 PMID: 13076182
  131. van den Berg CW, Ritsma L, Avramut MC, et al. Renal subcapsular transplantation of PSC-derived kidney organoids induces neo- vasculogenesis and significant glomerular and tubular maturation in vivo. Stem Cell Reports 2018; 10(3): 751-65. doi: 10.1016/j.stemcr.2018.01.041 PMID: 29503086
  132. Hu J, Zhang L, Wang N, et al. Mesenchymal stem cells attenuate ischemic acute kidney injury by inducing regulatory T cells through splenocyte interactions. Kidney Int 2013; 84(3): 521-31. doi: 10.1038/ki.2013.114 PMID: 23615497
  133. Cao H, Qian H, Xu W, et al. Mesenchymal stem cells derived from human umbilical cord ameliorate ischemia/reperfusion-induced acute renal failure in rats. Biotechnol Lett 2010; 32(5): 725-32. doi: 10.1007/s10529-010-0207-y PMID: 20131083
  134. Donizetti-Oliveira C, Semedo P, Burgos-Silva M, et al. Adipose tissue-derived stem cell treatment prevents renal disease progression. Cell Transplant 2012; 21(8): 1727-41. doi: 10.3727/096368911X623925 PMID: 22305061
  135. Wu HJ, Yiu WH, Wong DWL, et al. Human induced pluripotent stem cell-derived mesenchymal stem cells prevent adriamycin nephropathy in mice. Oncotarget 2017; 8(61): 103640-56. doi: 10.18632/oncotarget.21760 PMID: 29262590
  136. De Martino M, Zonta S, Rampino T, et al. Mesenchymal stem cells infusion prevents acute cellular rejection in rat kidney transplantation. Transplant Proc 2010; 42(4): 1331-5. doi: 10.1016/j.transproceed.2010.03.079
  137. Hara Y, Stolk M, Ringe J, et al. In vivo effect of bone marrow-derived mesenchymal stem cells in a rat kidney transplantation model with prolonged cold ischemia. Transpl Int 2011; 24(11): 1112-23. doi: 10.1111/j.1432-2277.2011.01328.x PMID: 21880071
  138. Casiraghi F, Azzollini N, Todeschini M, et al. Localization of mesenchymal stromal cells dictates their immune or proinflammatory effects in kidney transplantation. Am J Transplant 2012; 12(9): 2373-83. doi: 10.1111/j.1600-6143.2012.04115.x PMID: 22642544
  139. Franquesa M, Herrero E, Torras J, et al. Mesenchymal stem cell therapy prevents interstitial fibrosis and tubular atrophy in a rat kidney allograft model. Stem Cells Dev 2012; 21(17): 3125-35. doi: 10.1089/scd.2012.0096 PMID: 22494435
  140. Tsuda H, Yamahara K, Ishikane S, et al. Allogenic fetal membrane-derived mesenchymal stem cells contribute to renal repair in experimental glomerulonephritis. Am J Physiol Renal Physiol 2010; 299(5): F1004-13. doi: 10.1152/ajprenal.00587.2009 PMID: 20739390
  141. Jiménez S, Cervera R, Font J, Ingelmo M. The epidemiology of systemic lupus erythematosus. Clin Rev Allergy Immunol 2003; 25(1): 3-12. doi: 10.1385/CRIAI:25:1:3 PMID: 12794256
  142. Sattwika PD, Mustafa R, Paramaiswari A, Herningtyas EH. Stem cells for lupus nephritis: A concise review of current knowledge. Lupus 2018; 27(12): 1881-97. doi: 10.1177/0961203318793206 PMID: 30099942
  143. Tani C, Vagnani S, Carli L, et al. Treatment with allogenic mesenchymal stromal cells in a murine model of systemic lupus erythematosus. Int J Stem Cells 2017; 10(2): 160-8. doi: 10.15283/ijsc17014 PMID: 29186654
  144. Shree N, Bhonde RR. Conditioned media from adipose tissue derived mesenchymal stem cells reverse insulin resistance in cellular models. J Cell Biochem 2017; 118(8): 2037-43. doi: 10.1002/jcb.25777 PMID: 27791278
  145. Liu X, Zheng P, Wang X, et al. A preliminary evaluation of efficacy and safety of Wharton’s jelly mesenchymal stem cell transplantation in patients with type 2 diabetes mellitus. Stem Cell Res Ther 2014; 5(2): 57. doi: 10.1186/scrt446 PMID: 24759263
  146. Hu J, Li C, Wang L, et al. Long term effects of the implantation of autologous bone marrow mononuclear cells for type 2 diabetes mellitus. Endocr J 2012; 59(11): 1031-9. doi: 10.1507/endocrj.EJ12-0092 PMID: 22814142
  147. Lam AQ, Freedman BS, Morizane R, Lerou PH, Valerius MT, Bonventre JV. Rapid and efficient differentiation of human pluripotent stem cells into intermediate mesoderm that forms tubules expressing kidney proximal tubular markers. J Am Soc Nephrol 2014; 25(6): 1211-25. doi: 10.1681/ASN.2013080831 PMID: 24357672
  148. Morizane R, Bonventre JV. Generation of nephron progenitor cells and kidney organoids from human pluripotent stem cells. Nat Protoc 2017; 12(1): 195-207. doi: 10.1038/nprot.2016.170 PMID: 28005067
  149. Taguchi A, Kaku Y, Ohmori T, et al. Redefining the in vivo origin of metanephric nephron progenitors enables generation of complex kidney structures from pluripotent stem cells. Cell Stem Cell 2014; 14(1): 53-67. doi: 10.1016/j.stem.2013.11.010 PMID: 24332837
  150. Morizane R, Lam AQ, Freedman BS, Kishi S, Valerius MT, Bonventre JV. Nephron organoids derived from human pluripotent stem cells model kidney development and injury. Nat Biotechnol 2015; 33(11): 1193-200. doi: 10.1038/nbt.3392 PMID: 26458176
  151. Takasato M, Er PX, Chiu HS, et al. Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis. Nature 2015; 526(7574): 564-8. doi: 10.1038/nature15695 PMID: 26444236
  152. Hendry CE, Vanslambrouck JM, Ineson J, et al. Direct transcriptional reprogramming of adult cells to embryonic nephron progenitors. J Am Soc Nephrol 2013; 24(9): 1424-34. doi: 10.1681/ASN.2012121143 PMID: 23766537
  153. Kaminski MM, Tosic J, Kresbach C, et al. Direct reprogramming of fibroblasts into renal tubular epithelial cells by defined transcription factors. Nat Cell Biol 2016; 18(12): 1269-80. doi: 10.1038/ncb3437 PMID: 27820600
  154. Hiratsuka K, Monkawa T, Akiyama T, et al. Induction of human pluripotent stem cells into kidney tissues by synthetic mRNAs encoding transcription factors. Sci Rep 2019; 9(1): 913. doi: 10.1038/s41598-018-37485-8 PMID: 30696889
  155. Geng XD, Zheng W, Wu CM, et al. Embryonic stem cells-loaded gelatin microcryogels slow progression of chronic kidney disease. Chin Med J 2016; 129(4): 392-8. doi: 10.4103/0366-6999.176088 PMID: 26879011
  156. Caldas HC, Lojudice FH, Dias C, et al. Induced pluripotent stem cells reduce progression of experimental chronic kidney disease but develop Wilms’ tumors. Stem Cells Int 2017; 2017: 7428316.
  157. Imberti B, Tomasoni S, Ciampi O, et al. Renal progenitors derived from human iPSCs engraft and restore function in a mouse model of acute kidney injury. Sci Rep 2015; 5(1): 8826. doi: 10.1038/srep08826 PMID: 25744951
  158. Marcheque J, Bussolati B, Csete M, Perin L. Concise reviews: Stem cells and kidney regeneration: An update. Stem Cells Transl Med 2019; 8(1): 82-92. doi: 10.1002/sctm.18-0115 PMID: 30302937
  159. Morigi M, Imberti B, Zoja C, et al. Mesenchymal stem cells are renotropic, helping to repair the kidney and improve function in acute renal failure. J Am Soc Nephrol 2004; 15(7): 1794-804. doi: 10.1097/01.ASN.0000128974.07460.34 PMID: 15213267
  160. Herrera M, Bussolati B, Bruno S, Fonsato V, Romanazzi G, Camussi G. Mesenchymal stem cells contribute to the renal repair of acute tubular epithelial injury. Int J Mol Med 2004; 14(6): 1035-41. doi: 10.3892/ijmm.14.6.1035 PMID: 15547670
  161. Imberti B, Morigi M, Tomasoni S, et al. Insulin-like growth factor-1 sustains stem cell mediated renal repair. J Am Soc Nephrol 2007; 18(11): 2921-8. doi: 10.1681/ASN.2006121318 PMID: 17942965
  162. Tögel F, Hu Z, Weiss K, Isaac J, Lange C, Westenfelder C. Administered mesenchymal stem cells protect against ischemic acute renal failure through differentiation-independent mechanisms. Am J Physiol Renal Physiol 2005; 289(1): F31-42. doi: 10.1152/ajprenal.00007.2005 PMID: 15713913
  163. Tögel F, Zhang P, Hu Z, Westenfelder C. VEGF is a mediator of the renoprotective effects of multipotent marrow stromal cells in acute kidney injury. J Cell Mol Med 2009; 13(8b): 2109-14. doi: 10.1111/j.1582-4934.2008.00641.x PMID: 19397783
  164. Geng Y, Zhang L, Fu B, et al. Mesenchymal stem cells ameliorate rhabdomyolysis-induced acute kidney injury via the activation of M2 macrophages. Stem Cell Res Ther 2014; 5(3): 80. doi: 10.1186/scrt469 PMID: 24961539
  165. Papazova DA, Oosterhuis NR, Gremmels H, van Koppen A, Joles JA, Verhaar MC. Cell-based therapies for experimental chronic kidney disease: A systematic review and meta-analysis. Dis Model Mech 2015; 8(3): dmm.017699. doi: 10.1242/dmm.017699 PMID: 25633980
  166. Zoja C, Garcia PB, Rota C, et al. Mesenchymal stem cell therapy promotes renal repair by limiting glomerular podocyte and progenitor cell dysfunction in adriamycin-induced nephropathy. Am J Physiol Renal Physiol 2012; 303(9): F1370-81. doi: 10.1152/ajprenal.00057.2012 PMID: 22952284
  167. Rota C, Morigi M, Cerullo D, et al. Therapeutic potential of stromal cells of non-renal or renal origin in experimental chronic kidney disease. Stem Cell Res Ther 2018; 9(1): 220. doi: 10.1186/s13287-018-0960-8 PMID: 30107860
  168. Xing L, Song E, Yu CY, et al. Bone marrow–derived mesenchymal stem cells attenuate tubulointerstitial injury through multiple mechanisms in UUO model. J Cell Biochem 2019; 120(6): 9737-46. doi: 10.1002/jcb.28254 PMID: 30525227
  169. Du T, Cheng J, Zhong L, et al. The alleviation of acute and chronic kidney injury by human Wharton’s jelly-derived mesenchymal stromal cells triggered by ischemia-reperfusion injury via an endocrine mechanism. Cytotherapy 2012; 14(10): 1215-27. doi: 10.3109/14653249.2012.711471 PMID: 22920838
  170. Burgos-Silva M, Semedo-Kuriki P, Donizetti-Oliveira C, et al. Adipose tissue-derived stem cells reduce acute and chronic kidney damage in mice. PLoS One 2015; 10(11): e0142183. doi: 10.1371/journal.pone.0142183 PMID: 26565621
  171. Makridakis M, Roubelakis MG, Vlahou A. Stem cells: Insights into the secretome. Biochim Biophys Acta Proteins Proteomics 2013; 1834(11): 2380-4. doi: 10.1016/j.bbapap.2013.01.032
  172. Tsuji K, Kitamura S, Wada J. Secretomes from mesenchymal stem cells against acute kidney injury: Possible heterogeneity. Stem Cells Int 2018; 2018: 8693137. doi: 10.1155/2018/8693137
  173. Vizoso F, Eiro N, Cid S, Schneider J, Perez-Fernandez R. Mesenchymal stem cell secretome: Toward cell-free therapeutic strategies in regenerative medicine. Int J Mol Sci 2017; 18(9): 1852. doi: 10.3390/ijms18091852 PMID: 28841158
  174. Yun C, Lee S. Potential and therapeutic efficacy of cell-based therapy using mesenchymal stem cells for acute/chronic kidney disease. Int J Mol Sci 2019; 20(7): 1619. doi: 10.3390/ijms20071619 PMID: 30939749
  175. Perico L, Morigi M, Rota C, et al. Human mesenchymal stromal cells transplanted into mice stimulate renal tubular cells and enhance mitochondrial function. Nat Commun 2017; 8(1): 983. doi: 10.1038/s41467-017-00937-2 PMID: 29042548
  176. Zheng J, Wang Q, Leng W, Sun X, Peng J. Bone marrow-derived mesenchymal stem cell-conditioned medium attenuates tubulointerstitial fibrosis by inhibiting monocyte mobilization in an irreversible model of unilateral ureteral obstruction. Mol Med Rep 2018; 17(6): 7701-7. doi: 10.3892/mmr.2018.8848 PMID: 29620281
  177. Nagaishi K, Mizue Y, Chikenji T, et al. Mesenchymal stem cell therapy ameliorates diabetic nephropathy via the paracrine effect of renal trophic factors including exosomes. Sci Rep 2016; 6(1): 34842. doi: 10.1038/srep34842 PMID: 27721418

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers