Construction of GPC3-modified Lipopolymer SiRNA Delivery System


Cite item

Full Text

Abstract

Background:Gene therapy has been widely concerned because of its unique therapeutic mechanism. However, due to the lack of safe and effective carries, it has not been widely used in clinical practice. Glypican 3 (GPC3) is a highly specific proteoglycan for hepatocellular carcinoma and is a potential diagnostic and therapeutic target for hepatocellular carcinoma. Herein, to monitor the effect of gene therapy and enhance the transfection efficiency of gene carriers, GPC3-modified lipid polyethyleneimine-modified superparamagnetic nanoparticle (GLPS), a type of visualized carrier for siRNA (small-interfering RNA) targeting the liver, was prepared.

Methods:We performed in vitro gene silencing, cytotoxicity, and agarose gel electrophoresis to identify the optimal GLPS formulation. In vitro MRI and Prussian blue staining verified the liver-targeting function of GLPS. We also analyzed the biocompatibility of GLPS by co-culturing with rabbit red blood cells. Morphological changes were evaluated using HE staining.

Results:The GLPS optimal formulation consisted of LPS and siRNA at a mass ratio of 25:1 and LPS and DSPE-PEG-GPC3 at a molar ratio of 2:3. GLPS exhibited evident liver-targeting function. In vitro, we did not observe morphological changes in red blood cells or hemolysis after co-culture. In vivo, routine blood analysis revealed no abnormalities after GLPS injection. Moreover, the tissue morphology of the kidney, spleen, and liver was normal without injury or inflammation.

Conclusion:GLPS could potentially serve as an effective carrier for liver-targeted MRI monitoring and siRNA delivery.

About the authors

Dandan Sun

College of Pharmacy, Yanbian University

Email: info@benthamscience.net

Xiaoyu Li

Department of Radiology, Affiliated Hospital of Yanbian University

Email: info@benthamscience.net

Yaru Liu

Department of Radiology, Affiliated Hospital of Yanbian University

Email: info@benthamscience.net

Jishan Quan

College of Pharmacy, Yanbian University

Author for correspondence.
Email: info@benthamscience.net

Guangyu Jin

Department of Radiology, Affiliated Hospital of Yanbian University

Author for correspondence.
Email: info@benthamscience.net

References

  1. Asafo-Agyei KO, Samant H. Hepatocellular carcinoma. Treasure Island, FL: StatPearls 2022.
  2. Sahin ID, Christodoulou MS, Guzelcan EA, et al. A small library of chalcones induce liver cancer cell death through Akt phosphorylation inhibition. Sci Rep 2020; 10(1): 11814. doi: 10.1038/s41598-020-68775-9 PMID: 32678233
  3. Cavazzana-Calvo M, Thrasher A, Mavilio F. The future of gene therapy. Nature 2004; 427(6977): 779-81. doi: 10.1038/427779a PMID: 14985734
  4. Kaiser J. Clinical research. Gene therapists celebrate a decade of progress. Science 2011; 334(6052): 29-30. doi: 10.1126/science.334.6052.29 PMID: 21980087
  5. Zhao Y, Zhao T, Du Y, et al. Interaction kinetics of peptide lipids- mediated gene delivery. J Nanobiotechnol 2020; 18(1): 144. doi: 10.1186/s12951-020-00707-1 PMID: 33069258
  6. Lundstrom K. Viral vectors in gene therapy: Where do we stand in 2023? Viruses 2023; 15(3): 698. doi: 10.3390/v15030698 PMID: 36992407
  7. Sun D, Jin G, Jin Z, et al. Construction of a visualized liver-targeting siRNA delivery system. J Drug Deliv Sci Technol 2023; 85: 104566. doi: 10.1016/j.jddst.2023.104566
  8. Lu Y, Li J, Su N, Lu D. The mechanism for siRNA transmembrane assisted by PMAL. Molecules 2018; 23(7): 1586. doi: 10.3390/molecules23071586 PMID: 29966273
  9. Zu H, Gao D. Non-viral vectors in gene therapy: Recent development, challenges, and prospects. AAPS J 2021; 23(4): 78. doi: 10.1208/s12248-021-00608-7 PMID: 34076797
  10. Mirzaei S, Paskeh MDA, Entezari M, et al. siRNA and targeted delivery systems in breast cancer therapy. Clin Transl Oncol 2022; 25(5): 1167-88. doi: 10.1007/s12094-022-03043-y PMID: 36562927
  11. Li D, Gao C, Kuang M, et al. Nanoparticles as drug delivery systems of RNAi in cancer therapy. Molecules 2021; 26(8): 2380. doi: 10.3390/molecules26082380 PMID: 33921892
  12. Duan Y, Guan X, Ge J, et al. Cationic nano-copolymers mediated IKKbeta targeting siRNA inhibit the proliferation of human Tenon’s capsule fibroblasts in vitro. Mol Vis 2008; 14: 2616-28. PMID: 19137061
  13. Sánchez-Moreno P, de Vicente J, Nardecchia S, Marchal J, Boulaiz H. Thermo-sensitive nanomaterials: Recent advance in synthesis and biomedical applications. Nanomaterials 2018; 8(11): 935. doi: 10.3390/nano8110935 PMID: 30428608
  14. Mellott AJ, Shinogle HE, Moore DS, Detamore MS. Fluorescent Photo-conversion: A second chance to label unique cells. Cell Mol Bioeng 2015; 8(1): 187-96. doi: 10.1007/s12195-014-0365-4 PMID: 25914756
  15. Chen Z, Krishnamachary B, Bhujwalla Z. Degradable dextran nanopolymer as a carrier for Choline Kinase (ChoK) siRNA cancer therapy. Nanomaterials 2016; 6(2): 34. doi: 10.3390/nano6020034 PMID: 28344291
  16. Sun W, Wang Y, Cai M, et al. Codelivery of sorafenib and GPC3 siRNA with PEI-modified liposomes for hepatoma therapy. Biomater Sci 2017; 5(12): 2468-79. doi: 10.1039/C7BM00866J PMID: 29106433
  17. Zhang L, Chan JM, Gu FX, et al. Self-assembled lipid-polymer hybrid nanoparticles: A robust drug delivery platform. ACS Nano 2008; 2(8): 1696-702. doi: 10.1021/nn800275r PMID: 19206374
  18. García L, Buñuales M, Düzgüneş N, Tros de Ilarduya C. Serum-resistant lipopolyplexes for gene delivery to liver tumour cells. Eur J Pharm Biopharm 2007; 67(1): 58-66. doi: 10.1016/j.ejpb.2007.01.005 PMID: 17321729
  19. Wang J, Ye X, Ni H, Zhang J, Ju S, Ding W. Transfection efficiency evaluation and endocytosis exploration of different polymer condensed agents. DNA Cell Biol 2019; 38(10): 1048-55. doi: 10.1089/dna.2018.4464 PMID: 31433200
  20. Ewe A, Panchal O, Pinnapireddy SR, et al. Liposome-polyethylenimine complexes (DPPC-PEI lipopolyplexes) for therapeutic siRNA delivery in vivo. Nanomedicine 2017; 13(1): 209-18. doi: 10.1016/j.nano.2016.08.005 PMID: 27553077
  21. Lungwitz U, Breunig M, Blunk T, Göpferich A. Polyethylenimine-based non-viral gene delivery systems. Eur J Pharm Biopharm 2005; 60(2): 247-66. doi: 10.1016/j.ejpb.2004.11.011 PMID: 15939236
  22. Shih TC, Wang L, Wang HC, Wan YJY. Glypican-3: A molecular marker for the detection and treatment of hepatocellular carcinoma. Liver Res 2020; 4(4): 168-72. doi: 10.1016/j.livres.2020.11.003 PMID: 33384879
  23. An S, Zhang D, Zhang Y, et al. GPC3-targeted immunoPET imaging of hepatocellular carcinomas. Eur J Nucl Med Mol Imaging 2022; 49(8): 2682-92. doi: 10.1007/s00259-022-05723-x PMID: 35147737
  24. Montalbano M, Georgiadis J, Masterson AL, et al. Biology and function of glypican-3 as a candidate for early cancerous transformation of hepatocytes in hepatocellular carcinoma. Oncol Rep 2017; 37(3): 1291-300. doi: 10.3892/or.2017.5387 PMID: 28098909
  25. Lai JP, Oseini AM, Moser CD, et al. The oncogenic effect of sulfatase 2 in human hepatocellular carcinoma is mediated in part by glypican 3-dependent Wnt activation. Hepatology 2010; 52(5): 1680-9. doi: 10.1002/hep.23848 PMID: 20725905
  26. Liu S, Li Y, Chen W, et al. Silencing glypican-3 expression induces apoptosis in human hepatocellular carcinoma cells. Biochem Biophys Res Commun 2012; 419(4): 656-61. doi: 10.1016/j.bbrc.2012.02.069 PMID: 22382024
  27. Xing M, Wang X, Kirken R, He L, Zhang JY. Immunodiagnostic biomarkers for Hepatocellular Carcinoma (HCC): The first step in detection and treatment. Int J Mol Sci 2021; 22(11): 6139. doi: 10.3390/ijms22116139 PMID: 34200243
  28. Zheng X, Liu X, Lei Y, Wang G, Liu M. Glypican-3: A novel and promising target for the treatment of hepatocellular carcinoma. Front Oncol 2022; 12: 824208. doi: 10.3389/fonc.2022.824208 PMID: 35251989
  29. Sun J, Zhou Y, Jin G, Jin Y, Quan J. Preparation and preliminary evaluation of dual-functional nanoparticles for MRI and siRNA delivery. Iran J Pharm Res 2021; 20(4): 265-77. PMID: 35194445
  30. Yoo MK, Park IK, Lim HT, et al. Folate-PEG-superparamagnetic iron oxide nanoparticles for lung cancer imaging. Acta Biomater 2012; 8(8): 3005-13. doi: 10.1016/j.actbio.2012.04.029 PMID: 22543005
  31. Ghaffari M, Dehghan G, Abedi-Gaballu F, et al. Surface functionalized dendrimers as controlled-release delivery nanosystems for tumor targeting. Eur J Pharm Sci 2018; 122: 311-30. doi: 10.1016/j.ejps.2018.07.020 PMID: 30003954
  32. Bhatt H, Kiran Rompicharla SV, Ghosh B, Torchilin V, Biswas S. Transferrin/α-tocopherol modified poly(amidoamine) dendrimers for improved tumor targeting and anticancer activity of paclitaxel. Nanomedicine 2019; 14(24): 3159-76. doi: 10.2217/nnm-2019-0128 PMID: 31855118
  33. Chouly C, Pouliquen D, Lucet I, Jeune JJ, Jallet P. Development of superparamagnetic nanoparticles for MRI: Effect of particle size, charge and surface nature on biodistribution. J Microencapsul 1996; 13(3): 245-55. doi: 10.3109/02652049609026013 PMID: 8860681
  34. Harris JM, Chess RB. Effect of pegylation on pharmaceuticals. Nat Rev Drug Discov 2003; 2(3): 214-21. doi: 10.1038/nrd1033 PMID: 12612647
  35. Yamazaki Y, Nango M, Matsuura M, Hasegawa Y, Hasegawa M, Oku N. Polycation liposomes, a novel nonviral gene transfer system, constructed from cetylated polyethylenimine. Gene Ther 2000; 7(13): 1148-55. doi: 10.1038/sj.gt.3301217 PMID: 10918482
  36. Nieto González N, Obinu A, Rassu G, Giunchedi P, Gavini E. Polymeric and lipid nanoparticles: Which applications in pediatrics? Pharmaceutics 2021; 13(5): 670. doi: 10.3390/pharmaceutics13050670 PMID: 34066953
  37. Liu X, Gao F, Jiang L, et al. 32A9, a novel human antibody for designing an immunotoxin and CAR-T cells against glypican-3 in hepatocellular carcinoma. J Transl Med 2020; 18(1): 295. doi: 10.1186/s12967-020-02462-1 PMID: 32746924
  38. Kostevšek N, Cheung CCL, Serša I, et al. Magneto-liposomes as MRI contrast agents: A systematic study of different liposomal formulations. Nanomaterials 2020; 10(5): 889. doi: 10.3390/nano10050889 PMID: 32384645
  39. Wang B, Wu W, Lu H, Wang Z, Xin H. Enhanced anti-tumor of pep-1 modified superparamagnetic iron oxide/ptx loaded polymer nanoparticles. Front Pharmacol 2019; 9: 1556. doi: 10.3389/fphar.2018.01556 PMID: 30723412
  40. Amin K, Dannenfelser RM. In vitro hemolysis: Guidance for the pharmaceutical scientist. J Pharm Sci 2006; 95(6): 1173-6. doi: 10.1002/jps.20627 PMID: 16639718
  41. Zhang H. Preparation and Preliminary Evaluation of Glycosaminoglycans Modified Superparamagnetic Iron Oxide Nanoparticles as MRI Negative Contrast Agents. Shandong China: Shandong University 2020.
  42. Singh N, Sahoo SK, Kumar R. Hemolysis tendency of anticancer nanoparticles changes with type of blood group antigen: An insight into blood nanoparticle interactions. Mater Sci Eng C 2020; 109: 110645. doi: 10.1016/j.msec.2020.110645 PMID: 32228982

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers